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Abstract

The possibility and feasibility is investigated of including
~in the modelling of nuclear cluster reactions a unified treatment
of the effects both of the non-orthogonalities between transfer
channels, and of the antisymmetrisation required by the Pauli
Principle. The deuteron -~ nucleus interaction, the simplest
cluster reaction, is considered in detail within the Coupled
Channels framework, The Coupled Channels formalism was chosen
because it accurately handles inelastic and transfer couplings of
arbitary strengths,

The fact that transfer channels are orthogonal to each other
only asymptotically is taken into account by reallocating the
wave function in the internal region, from the deuteron channels
to the transfer channels, taking components from the deuteron
channels in ways exactly analogous to the way the antisymmetris-
ation requirements remove blocked deuteron-core components., Thus
a unified treatment of the two effects is facilitated.

It is found further that when all possible -transfer channels
are included, along with all Pauli blockings from the core
nucleons, then under certain conditions at low energies, the wave
function in the deuteron channel is small and oscillatory in the
internal region, leaving the deuteron as a cluster to have largely
asymptotic significance. In this 1limit, the exact non-=local
potential governing the deuteron channel simplifies considerably
in one appfoximation to be replaceable by just several orthogon—
ality conditions, and these are easily modelled in solving the
coupled equations for the radial wave functions. This simplified
and unified model has the advantage, since the deuteron's internal
wave form is significant only asymptotically, of allowing auto-
matically for arbitary deuteron polarisation by the core (though
not vice-versa). Furthermore, the asymptotic matching is not at
a fixed radius as in R-matrix theory, but is a continuous process
that depends on the binding energies of the actual proton & neu-

tron bound states in the residual nucleus.
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Chapter 1 Introduction

When two clusters of nucleons approach each other, they may
interact in several ways. The primary interaction results from
the inter-nucleon two-body force, which has an average effect found
by folding over the internal states of the two clusters. The
clusters move in the folded potential subject to the Pauli Principle,
and as they move they may be excited internally, and nucleons may
be transferred from one cluster to the other., The purpose of the
present work is to investigate how the Pauli Principle, inelastic
excitations, transfer reactions, and their multi-step combinations
may all be satisfactorily included in a model of a simple cluster
reaction : the reaction of the simplest cluster, the deuteron,

with another cluster of arbitary size.

Deuteron stripping reactions have traditionally been important
in nuclear spectroscopy for determining the quantum numbers and
spectroscopic factors of single-particle states that can be filled
by transferring a proton or a neutron from an incident deuteron.
Spectroscopic factors for these states are found by using the observed
cross-sections to normalise a theoretical calculation of the reaction
rates. The calculations generally use the plane-wave or the distort-
ed-wave Born approximations (PWBA or DWBA), which are easy to perform

and widely used.

These first-order Born approximations can however be extended,
to accurately model multi-stage processes involving e.g. inelastic
cluster excitétions. For in certain resonance reactions, the excited
states occur with large amplitude and form an essential ‘'doorway

state' in the reaction path. In these and other cases where strong



couplings are evident, to obtain accurate predictions the DWEA etc.
must in general be replaced by the Coupled Channels method, which
takes into account all orders of interactions and accurately

handles couplings of arbitary strengths.

The Coupled Channels method has been extended to include all
transfer channels as well as the ineiastic doorway states, and thus
can model all the processes outlined in Figure 1.1 . Note that the
model naturally includes two- and higher-step reactions, and also

the exact reverse couplings physically necessary.

two-step transfers

inelastic
excitations &
18t excited state Fesaxalty flons
inelastic \
processes —step ground state
ground state ————==— transfer reaction
target nucleus residual nucleus

Figure 1.1

When the transfer channels are included however, the complication
arises that the reaction channels are no longer orthogonal to each
other ih the internal region. The present work is concerned
primarily with finding satisfactory treatments of the Pauli Principle
and the non-orthogonality problems within the Coupled Channels

framework,



In the thesis, chapters 2 & 3 are largely summary chapters that
deal respéctively with the standard C;upled Channels formalism, and
with the single-particle scattering theory that includes the Pauli
Principle. In both cases a number of minor extensions are presented.
Chapter 2 begins with the usual application of the coupled channels
procedure to deuteron stripping: in particular to neut;on—transfer
reactions of deuterons on a target nucleus that can be inelastically
excited to a quadrupole excited state. Sections 2.5 & 2.6 then
extend the basic formalism to take into account (a) orthogonality
conditions on the radial wave functions, and (b) non-local potentials,

both of which will arise in later chapters.

Chapter 3 gives a summary of Feshbach's Unified Reaction Theory
(see Feshbach, 1968) applied to the scattering of single nucleons by
nuclei, when the Pauli Principle (i.e. antisymmetrisation) is taken
into account. Later sections extend the theory to allow for config-
uration mixing in the core, and also its inelastic excitation., Similar
techniques have already been used to find energy eigenstates of the

nucleon-plus-nucleus system: see for example Friedman(1967)

Chapter 4 extends the Feshbach theory again to model deuteron =

nucleus interactions, the simplest cluster - nucleus interactioﬁ.

In this case the magnitude of the antisymmetrisation effects is
particularly important at low scattering energies (e.g. several Mev,),
where it is clear from the simple model of section 4.1 that they
should be much more significant. D8hnert(1971) does some preliminary
analysis with realistic wave functions, while Buck, Friedrich &
Wheatley(1977) have recently proposed a 'symmetric (1—K)% ansatz' for

the effective Hamiltonian for the relative wave function between the



clusters, and give several justifications for it. In chapter 4 an
alternative approach is used to derive the (1-K)% approximation in

a semi-rigorous manner for the specific cluster reaction of deuterons
on nuclei, and to investigate in detail the assumptions sufficient for
the result. The chapter uses the proton & neutron operators 1-Kp

& 1-Kn (derived e.g. from the standard theory of chapter 3) to derive

a 1-Kﬁ operator for the deuteron-nucleus relative wave function., It
will be seen that the effects of the 1-K operators of both kinds may

be split into two parts: the projecting out of fully-blocked components,
and secondly the renormalisation by (1-K)-'lr of partially-blocked
components of the relative wave function. It is shown that with
certain assumptions, the same split may be made in the antisymmetrised
Hamiltonian too. This enables all the renormalising effects to merely
renormalise the wave function by (1-K)~é, so that only the projection-

operator effects remain in the final channel equations.

The proper inclusion of transfer channels in the coupled channelé
framework is next considered. Although recent work (see e.g. Cotanch
& Vincent, 19763 Udagawa et al,1973; Goldfarb & Takeuchi,1972 & 1974;
and Ddhnert, 1971) has questioned the assumption, most models of trans-
fer reactions have assumed that the deuteron and transfer channels have
internal states that are mutuwally orthogonal. If this were so, the
transfer coupling would involve only the )% part of the Hamiltonian,
and there would be no coupling terms involving the kinetic energy oper-
ators or the optical potentials. In fact, as is shown in chapter ?,
the states are not orthogonal, principally because the internal states
of the two kinds of channels are defined with different coordinates and

are eigenstates of different partitions of the Hamiltonian,



Chapter 5 is devoted to the non-orthogonality problem, An
analogy is found between the non-orthogonality of the internal states
and the non-orthogonality of two non-perpendicular vectors in the
rlane, and a number of proposals for redefining internal states are
illustrated on this basis, One such proposal is found to be suitable
" for further development: one in which the internal state of the
proton's exit channel is kept unchanged, and used to orthogonalise
the internal state of the deuteron channel., The process may be
repeated for multiple exit channels, and the orthogonalised deuteron
state may or may not be renormalised, This method is used because
it gives cumulative effects when one deuteron channel is orthogonalised
to many transfer channels. Reaction calculations are typically of
that form, but in any case it is here that significant consequences
may be expected. This is illustrated numerically for deuteron

13

reaction on 120 leading to many p + ¢* transfer channels.

Chapter 6 brings together the treatments of antisymmetrisation
and of non-orthogonalities of chapters 4 & 5 respectively. We see
here that the full advantage is brought out of the method of orthog-
onalising chosen in chapter 5, For now we find that this orthogon-
alising reallocates the wave function in the reaction region from the
deuteron channels to the transfer channels, taking components from the
deuteron channels in ways exactly additive to the way the antisymmetr—
isation requirements remove blocked deuteron-core components, Further,
when all possible transfer channels are included, along with all Pauli
blockings from core nucleons, then at low energies the deuteron
channel is fully blocked in the internal region, leaving the deuteron
as & bound state to be significant only asymptotically. In this

limit, the exact non-local potential governing the deuteron channel



simplifies dramatically in one approximation to be replaceable by
Just several orthogonality conditions on the relative wave function,
and these can be modelled easily when solving the radial coupled
channel equations as explained in section 2.5 . This simplification
is examined numerically again with respect to the 126(d,p)130* set

of reactions.

Finally, some general observations are made concerning the
importance of the the Pauli Principle and non-orthogonality effects

in a wider range of reaction calculations.



Chapter 2 =~ JSystems of Coupled Channels

In this chapter we present the usual coupled channel theory
for the elastic and inelastic scattering of two clusters, and also
include the transfer channels on an equal footing. In this
procedure the channels' internal wave functions are assumed to be
orthogonal, and a set of coupled differential equat;ons involving

local potentials is obtained.

In section 2.1 we give the approximations required to obtain
the standard coupled channel (CC) equations when the channel wave
functions define the interacting clusters. Section 2.2 piesents
the Hamiltonian in a form which may be partitioned according to the
various channels, and which also permits the usual folding procedure
to be used to obtain the distorting potential for the channel clusters.
In section 2.3 the radial equations are presented, which are obtained
by the usual procedure of substituting the total wave function into
Schrdodinger's equation HY = EY, and using the interpal 'angular?
channel wave functions as projection operators which are here assumed
to be mutually orthogonal. (In chapter 5 we do not assume this orthog-—
onality, and are led to non-local terms in the CC equations.) We present
in section 2.4 the results of a numerical calculation for a particular
reaction which includes the reverse coupling of the transfer channels
to the incoming (deuteron) channels. We compare our results with the
earlier CCBA, and will use this CC model in investigating the effectis

of taking the non-orthogonality and antisymmetrisation terms into account.

In the final sections 2.5 & 2.6 we first present the mathematical
methods ‘which will be used latter to enforce orthogonality between
radial scattering wave functions and other bound radial functions,

and then we find methods to deal with non-local terms.



2.1 Coupled deuteron and transfer channelg

In later chapters the reactions of deﬁterons on 120 nuclei
will be used as a test case to determine the validity of certain
approximations and the size of several effects concerning the
'aﬂeumptions listed below. Several deuteron reactions will be modelleds
elastic scgttering; inelastic scattering with the excitation of the

1200+ core to its 2+ state at 4.43 Mev, and neutronptrénsfer reactions

26 4+ m ) residual nucleus. All

leading to a proton and a '°C ( =
~ these possible reactions channels will be considered not as small
perturbations of the incoming deuteron channel, but on an equal
footing with it. This is done using a standard coupled-channels (CC)
formalism, which solves for all channels simultaneously, and effect-
ively includes all orders of perturbations.

Ffor the sake of completeness, this section gives the detailed
channel equations of the CC system. Aa outlined in chapter 1, however,
the standard CC approach ignores effects such as
1) Pauli Frinciple effects between the core and scattering nucleons,
2) the non—orthogonality'of the transfer channels to each other,

which strictly should generate further coupling terms between
then,
3) polarisation of the deuteron as it approaches the charged target

nucleus

4) deuteron break-up reactions (d,np) giving 3-body final states.

The aim of the present work is to try to remedy the first two
shortcomings within the CC framework, and indirectly the third. Other
approaches (Farrell et al. 1976, & Eppel et al. 1978) must be used to model

break-up reactions.



- The total wavefunction for the chosen model contains two kinds
of channels (i) deuterons around the target nucleus A (120 here),
and (ii) protons around the residual nucleus B = A + n (130 here).

These two kinds have wavefunctions of the forms ua(g) ¢d(£) ¢A(£1""£A)

and up(_:gp) ¢B(£n’£1' - ,gA) respectively, where

éh(gq, e ,51) iz the wavefunction of the target nucleus of A nucleons

¢B(£n’£4’ ’EA) is the state of the residual nucleus B = A + neutron

ﬂd(g) is the internal deuteron state

ud(g) is the relative deuteron~target wavefunction
& up(_p) is .the relative proton-residual nucleus wavefunction,
and where

Ly ** Z) ‘are the coordinates of the A nucleons of the target A

relative to the centre-of-mass of A
is coord, of the neutron reiative to the cm. of A
is coord. of the proton relative to the cm. of nucleus B

is coord. of the em. of the deuteron relative to the A cm.

MM G

is coord. of the proton relative to the neutron position.

When theAétates ¢A to u, are expanded in terms of angular
momentum eigenfunctions, the full model space has two kinds of sums-
over angular-momentum quantum numbers. In the entrance channel the
chosen model allows for excitation of the target nucleus A, to various
states ¢I(£4’ ..,;ﬁ), by an incoming deuteron in state (Lasa)Ja where
the deuteron spin is Ba=1. In the exit channel it allows for an out-
going proton in state (Lbsb)Jb (proton spin sbzﬁ) and a residual nucleus
B in state 'm' with total angulér momentum JB. Its states ‘
¢§§(£n’£1""51) are expanded as sums of neutron-plus-target states

with coefficients of fractional
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parentage AinB describing the amplitude of neutron single-particle
state (1s)j (neutron spin & = %) with target state I in the final

B-state number n with angular momentum JB‘

The overall Y-field for total angular momentum J with z-component

M is now written in the model form

,‘PJM -

\. m J 0 u 3 La, a8, i
L ve@ w@ g x) @
LaﬂamaJa
LaBaJa IJ 1_ J
'CHmM-Hn’CHHnuM «  ®f1 e )s 1(®)
aea 4 T VYaa‘'a .

+'J}§%n V@ 830G, x,..) £ @) s(L 8, )3, 30 (%)

o Y S S Lbsbdy I5d )
*Ciyayiyem, Cigom,
where '
ggii"@“v"r’"") i 12.11 Aﬁg Ci -uluﬁﬁ #1000 XMB-U(—n)' (2)
3

;&) = IE Camear 8 0 E) VEV@ R, G) e ()
B - L 28 o ' (4)
_ dQ) ot fa®®

assuming that the internal deuteron wave function is completely that

of an s-state,



’ 1
2.2 Hamiltonian Partitions

Let 'H' be the Hamiltonian for the full system of a proton at gp,
&. neutron at o and a target nucleus consisting of '2* protons and

*N' neutrons at rp y J=150e42 & T 7i=1,..4N respectively, with N + 2 = A.
i

In terms of the three internucleon potentials vpp’ v vV =V

pn np’
and with Tp & Tn the kinetic energy operators for a proton & neutron

nn’ &

respectively, H may be written as

H = Tp(rp) + Tn(rn) + Vpn(rp,rn)

ey

" g .
+ [g Vpp(rp.rpj) + Vbn(rp,rni)]

2 N :
. [z vz az) 4 ) Vnn(rn,rn)]
J i i
(5)

where HA is the Hamiltonian for the nucleus TA® :
T (x_ ) % i ( )'
H = z [ T (r + , V. (r_ ,r ]
A n ni k&i nn ni nk

z
+J): [Tp(rpj) + 3 &J vpp(rpj'rpl)]

! 12 § an(rpa'rni) | -

The nucleus states ¢; are eigenstates of HA for energies e; ¢

H, §7=e 4V (7)

-

The external nucleons at 2, & r experience a collective potential
from all the core nucleons. This potential is customarily divided
into two parfs, called the 'folded potential' and fhé 'inelastic
excitation potential®, that respectively are diagonal for, and couple,
different internal states of the nucleus ¢i for distinct quantum
numbers 'I°, The collective potential of the core nucleons in their

state ¢I(r1,..,rA) is most conveniently derived in terms of the

'
IT* KII

1 (ryr') for the protons &

one-particle density operators p
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L ]
neutrons separately : K;I & KiI where

,..,rn ’oo).>

J1? '
K ! = g ' X ee eoe ) X
P (rp'rp) <é1|<rp1 P f orn1o )! ¢I( p'rpz .

2

(8)

11?
and Kn (rn,r!'l) = <¢I,(rp1,o¢,rn,rn2'co) I ¢I(rp1‘...,r£,rn2,..)> .

Ignoring antisymmetrisation, which is to be treated in Chapters

3 & 4, the two parts of the collective potential may now be written

I
By brpe ¢ Ve 1)
- II" ' I
e (Von(zpe) B ) o+ Troe (Vop@Epezpd K7 (21022)) (9)

II*
= [ Vpa(mpm) Ky @z, 4z

IT*
+| ¥ T ,2') K r! p! dr? expandi the Trace operators.
[ Vpplzpozy) X7 (z2)) azp o expanding P

and

I . ex :
V) b+ Ve, T,

=t (Vo Gr) 98 v O G KT @hn) ). (10)

Using these definitions, the potentials and couplings of H

between two target states ¢I & ¢I' (fixed and presumed known) ere the

IIY
2

of the 2 variables r & r
=p “m

'‘matrix elementa' of H : H - <¢I,|HI¢I> that are still functions

IX® . I I
2 = [Tp(;p)+vp(£p) - Tn(zn)+vn(£n) + Van;pfgn) - eI] S1g0

VI 4 VN, I,IY) (11)

H

The above expression for H, is called the 'post' form, H,, of the

2 T
Hamiltonian, as it is most naturally suited to the outgoing proton
channels in a (d,p) reaction, when the proton and neutron move largely

indepen@ently. In the deuteron channels, the proton and neutron by
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contrast are most frequently in the specific relative state ¢d(g).
Now the kinetic energy operators Tp +'Tn can be rearranged fo equal
Td + Tdi’ where Tdng) is the kinetic energy internal to the proton =
neutron pair, and Td(gj is the kintic energy of the deuteron cluster
~ relative to the target cluster, The Hamiltonian is then nearer its

'frior' form H, :

I8

B = ['rd(g_) + Vg(g_p)-ﬂi(_:_'n) * T (x) + vnp(_:;) & °I]6II'- + vg"
(12)

‘The deuteron internal state ¢d(£) is an eigenfunction of the part

Hamiltonian Tdi + vnp ’

(f@ + L@ ] 5@ = e 8@ (13)

for eigen-energy e, = =2,226 Mev,

d

The states ¢J B of the residual nucleus 'B? are eigenstates at
B

Ign of the part Hamiltonian HB(En'Eﬁ""Eh) composed of the

Tn kinetic energy operator, the folded and excitation potentials for

energies e

the neutron, along with the core Hamiltonian HA:

Z N
Hy = Tn(zn) o 521 vpn(?-pj’-r-n) " P vnn('gn’zni) * By -
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It is now usual to define averaged potentials, first for the
deuteron-core interaction by averaging ('folding') over the deuteron's

internal state f§,: |
f ¢d(—) (V (1' (B,z)) + ¥ (_..n(Rar)) ¢ U dr , (14)

and secondly for the proton - residual-nucleus (B), by summing the

proton-core potential Yp with an averaged effect from the extra neutron:

) = T+ JECS zy0e) P Vo Gn,) dx, az .

(15)

Ve now rearrange the post and prior Hamiltonians to

ex
B o= Tu@)4(R) + Ty (@) () + Y, ®,z) + V3¥ + B, (16)
defining L) (R,z) = V (z)) + V (z;) - ¥y @), (17)

- ex
= H,(R) + Ey () + LR.xz)+ Vg + Hy , defining By & Hy;+(18)

& Hp = Tp(;p)+wP(£p) + Tn(gn)+vn(;m)+vzx+HA + 'Uf(g_p,_x;n) + V;x (19)

= Hp(EP) o+ By(xezgsee) + f(s,p.r)-rv;x
where .22f(—p’r ) = vnp(—p r) + V (r ) - WPCEP) (20)

The oﬁly terms depending on more than one channel variable (ie. on
5oth R and gp) are')a and_ e and they couple the incoming and
transfer channels, Compared with'l%, however, l% is much simpler
and more convenient to use, in that for (dyp) reactions, most of
2% can be replaced by Vnp, 'about which we presume to have some

knowledge, as in, for example, the zero-range approximation
2
Vnp(a) = +D /§,00) . sz) with D, = =122.5 Mev.fn

from for example McCarthy, 1968, section 13 A(iii).




243 Coupled Radial Equations

The channel equations for the deuteron radial wavefunctions

fgL 5 )J-I(R) are therefore in detail
aa’‘a

2 L_(L_+1) _]
-1 a d a'\a J
+V (R)+=2—2— _g |f ()
«0478U; 402 opt .0478udR2 dI, (15,0 1
) ¢ (d-ex)

J
. o P.(R) . £ (r)
L1J11e (Lasa)JaI.(Lésa)J;I' d (Lésa)J;I'

¥ . 3 gud Mp -2 My o
" G v(Lasa)JaI : (Lbsb)JbJBn(R) .(MA) ’ g(Lbsb)JbJBn’(HB i) = i
P b B . , (21)

where ud' = ¥ +m, * Bg= Dass of deuteron, MA=mass of target A in amu,

d d a d(Lysy )Jda
vOpt = vnncl ¥ vcoul & vspin—orbit

Yd
n

in Mev.
1 2
wel™ -Vod/(1+exp;XR-R°A§)) = -vod/Ed(R) s the Saxon-Woods form,

and  Fy(R)=(E(R)-1) + E;(R)™? is the inelastic-excitation form factor.

The couplings are '

V%L §d5§x% : (L's )J'T0 * Fy(R) (Quadrupole core excitation Q=2)
aa'a aa’‘a

= FyR) o 1%aTe [ 4¥T-T L 4nyt §
« (101'0]Q0) . (LaOLAOIQO)

R LIB AR 178 Tt
.« J,32 L L1 w(LaJaLaJa, saQ) " ?(IJaI I3 JQ)

.(_1)-J +8, + I+ La + L;

8.2t (v ) / (au5?) | O (22)

vhere the excitatory effect of the deuteron is now assumed to be
that from a single particle of unit charge and mass 2 amu, 80

2 BROAZ(-vod)

Y@L = ] m@"

1 p2
) Fa(R) <81, |D5,] 8>
Q=2

(23)

a

with B = deformation parameter of nucleus 'A'.



16

The couplings VJ (ap) are the d-p transfer couplings, here derived

from the zero-range approximation TL) : vV, (r) D, §(z) / $(0) s

gL(g ; J I (Lbsb)JbJBn(R)
}:: n A - Ly 8y 9y
= 5 D, Iz I, W(IJJJb; JBJa) . z : i
a &8 &a ®

. Ag:an N R E A ¢ La Ly Ry (@) (24)

The proton radial wavefunctions g(L ) satisfy the
: b

sb)J g n(r
channel equations

-1 d22 SV (x) + Ly, (Ly+1) . e, (=)
.0478up drp opt  p .0478up_rp pJBn (Lbsb)JbJ n‘\"p
. } < (@p) gt "5 .
f51  (Lys)dypdpn & (1,803, (% ) (MB) (L 8,)J I(MA p)
a'a
(p-ex) J '
+
L{:J];Jén' (Lb&b)Jb g ¢ (Ll')Bb)Jl')Jén' g(Lésb)JéJérl'(rp)
+ Z v (v“") &} (x) = o
. (L s )J s (.L'B )JtJnnl (L'st)JlJlni p
L%J%Jin' b b vb b ‘b‘B bbb B (25)
m QHB
vhere W .iéF;; ’ mp:mass.of proton, Mp= mass of residual nucleus B

Vzpt(rpl = proton - B optical potential with the usual nuclear,

Coulomb, spin-orbit & imaginary absorbtion terms.

The three couplings VJ dp, p-ex, & Vnp are respectively

@) v.(@8) _ oI (a)

#b : #a = #a #p from above : the transfer coupling is symmetr;q

(b)) The p-p’' coupling caused by excitation of the core A, with the

neutron as a passive bystander:'
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J  (p-ex)
v
(1,8,)9, 958 ¢ (Lisy)dpdn (=)

E JIJpn ,3JI'Jint o | S "y
= A AYT VB, fﬁ 30 W(ITIT, s JBJc)rii J, w(Ir s JéJc)

13 1s) 1sj 7
I1I1'J :
. ch (d-ex)"

(ngb)JbI : (Lgsb)Jﬁl'
. Fp(rb) except with R A , V ., & a replaced by the

parameters of the proton's optical potential.

(26)

(c) The p-p" coupling between proton channels caused by the Vhp(rp—rn)
- | potential between an outgoing proton and a bound neutron; The
proton and neutron can scatter off each other; the core is a

passive bystander. In the zero-range approximation, VJ (Vap) is

vJ. (Vop) :
(Ly8p)9y9pn ¢ (Lisy )ILIqn! (rp)
" R, .(z) =R (z.) ghp + 1 =1 -1
g0 131vgr rsdTE LtedtTRY T
L.LY11* .
b~ b (Lb 1 L) (Lg 1! L) By © S 8y, © S
T 1S 47 0 00° 7% 0 0% \; 5 allar 5 g
a . b all b a
JIJpn ,§' I Jin 2 S
" 2;: Aley Aligye B Jp I, W(LjIIs JBJa)
e I8 3. W(I3'33s I1T,) (27)

The asymptotic boundary conditions for the radial functions are,

ag R & rp become large,
‘ f‘ELGBa)JaI(R ) i %i ° (LaJaI,L:J:Ii ) [ éLa (kIR) - iFLa (klﬁ-) ]
-%isgLaga)JaI [?La(kIR) + iFLa(kIB?.] (28)

vhere L JiIi specify the incoming channel,

I
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2 .
and 'S'" ig the S-matrix element for L:'J:I1 < LaJaI scattering.

" The proton radisl wavefunction becomes

. i J - ' o »
g (r ) > (=-%isyid i [G (k. r )+iF, (x. r )]
(Lbsb)JbJ n L J I :L.J, Jon . Ly  dgn p L\ Jgn P’
E | for scattering EPJBn~>°
J y
3 s vk [e) (29)
l Ldpdgn Ly Iz Tp
for bound states EPJBn‘:o'

The transfer cross-sections for a‘spin-zero target (Ii=0) are

dch
ag = 2s;+1 ;g;%;i lfmbHBn(e)| (30)
a
Z 2L +1
with f bMBn(e) = 53— 4 el i(k 1) ( )% (LiMas m, |J M_+m )
Ba in Jt La
H =0

21_—3 (mebsbmbl JbMa+ma-MB) (meama-nB I My |Ji1-13+ma
b

i P 1.3, .
. € (640) o+ Sti i i . 31
ci‘b Lp 00 21 SLlei1in, 3 dn (31)

These channei equations have been derived assuming that the
deuteron-channel internal states ¢d’¢A are orthogonal in the region
of interaction to the proton-channel internal states thn' They are
in fact not orthogonal, and the effct of this non-oithogonality will
ie investigated in detail in chapter 5. In the standard coupled-

channels approach, the assumption of orthogonality means that the

full set of N coupled equations is of the mathematical form
: d2 N
aiz;g + by () £.(x) + 32; Vij(x) fj(r) = 0, i=1 .. N,

vith everywhere local terms bi(r) and Vij(r)' This allows. the CC system
of equations to be solved directly using uaing the numerical integration

procedure described in Buck; Stamp & Hodgaon(1963).



2.4 Numerical Calculations

To determine the numerical effects of the Pauli Principle and of
transfer channels, the coupled-channel formalism will be applied to
the reactions of deuterons on carbon-12, allowing inelastic excitation

12C

of the target to the o+ state at 4.43 Mev., and neutron transfers

to the lowest several states of 13C, as listed in Table 2.4.1.

Particular attention is given to the deuteron resonance at an

incident energy of E, = 2,71 Mev. in the lab., frame. This resonance

d
ie believed (Stamp, 1974) to be formed as a 14N3+ intermediate state,

wvhen the 12

C target is excited to I = 2% and the deuteron is captured
into the bound 251 eigenstate of the deuteron-core collective potential.
Because in this type of intermediate *‘doorway state' the deuteron
amplitude is very large in the reaction region, it was believed that

the non-orthogonality and antisymmetrisation effects would be large.
Stamp modelled this reaction by solving the coupled-channel set of
elastic and inelastic deuteron channels, followed by a T-matrix calcul-
ation of transfer amplitddes from these deuteron channels: what hes

been called the Coupled Channels Born Approximation CCBA, One aim

of the present work has been to loo£ at the above reaction with a similax
set of physical parameters to those used in Stamp(1974) - see Tables 2.4.2
to 2.4.4 - but to take into account the reverse neutron-pickup

coupling (ie. the effects of the coupling v (ap) in eqn. 2.1.é4),

to include deuteron - core antisymmetrisation, and to treat properly

the non-orthogonality of the deuteron to the proton channels., The
treatment of these second and third features is the subject of chapters

4, 5, &.6, so their effects on the differential cross-—-sections are

determined later, and the results presented in sections 5.4 & 6.5.
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Table 2.4.1

6 states 3 their coefficients Aigan

12

of fractional parentage from CI.
n EB(Mev) g 126 core 1 =0 120 core I = 2
+ neutron state : Aggan +neutron state: Afggéh
1 0.0 % + Op%_ t =.T7090 + 0p5/2' : =.6981
+ Ofs/2 : +.1003
2 | 3.08 |4 + 08y 1 =.9454 + 0dyp, ¢ 1118
+ 0d5/2 :  .3062
3 | 3.684 %7> +0py/, 1 -uB918 +0py 1 .2021
+ Op3/2 T L2619
+ 0f5/2 t <0546
+ 0f7/2 :  .2187
+
4 | 3.854 |2 + 045, + =.9261 +08s; 1 L1410
+ 0d3/2 : 0686
+ 0d5/2 t 3433 |
+
5 | 6.864 | 2 +085/, & 0623 + 05y 1 -.8556
+ Od3/2 : +.0324
+ Od5/2 s 5129
&
6| 1.68 |2 +0d., 1 L0464 + 0ay 1 -.8204
+ 0d3/2 t -,2026
+ Od5/2 t +5327

These coefficients were obtained by diagonalising the inte#action
between a neutron (moving in the potential of Table 2.4.3)

and the deformed '2C core (in either its I=0 ground state, ar its I=2
first excited state at 4.43 Mev) with deformation g = =0.4,

along the lines of Robson & Van Megen(1972b), to derive results
similar to those of Barker(1961),
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Table 2.402

Bound neutron gtates in 190 (in Stamp 1974, from Lovas 1966,

State Binding energy(Mev.) Well depth =V (Mev.)v Vig (Mev.)
08% 52.15 5706 704

op; 1, 16.68 n n

Or; 11.70 " "
0d5/2 2.19 » "

18% 1087 " . "

0572 & 3/2] 1.00 117.4 7.4

Saxon-Woods potentials with R = 1.25 A1/3 fm., & a = .65 fm,

Table 2.4.3

Central potentials of 120 : parameters for Saxon=Woods fornms
® t
projectile =Y T, a vls TS a
Mevy fm fm Mev fm , fm
deuteron 'B! 113.5 0.9 0.9° 5.0 0.9 0.9
1c 116.5 0.9 1.0 5.0 0.9 0.9
proton 54.0 1.25 0.65 T4 1.25 0.65
neutron 57.6 1.25 0.65 T4 1.25 0.65

(No imaginary absorbtion parts were present)

Table 2.4.4 Channel cou 1 e r

d-d*® & p-p' coupling by rotational excitation of a deformed 120 core .

Deformation parameter B = =0.4

d-p & p-p' coupling by Vnp(g), the proton-neutron interaction

Do<g'- 122.5 Mev fm}/2 in the zero-range approxX.
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The effect of first including the reverse pickup coupling is
shown in Figure 2.4.1. The main effect of increasing the coupling
from'the proton back to the deuteron channels is to reduce and
broaden the resonance peaks. The figure shows how cross-sections,at
1602 of transfer reactions from the La=2’ Ja=3 incoming partial wave
change as D° of the reverse dp.coupling terms V(dp) is increased from
a gméll value of =4.0 up to the physical value of =122.5. (Potential
1ce of‘Tablé 2.4.3 gives the resonance at 3.025 not 2.71 Mev., but
the mechanism is believed the same,) The liﬁit of Do + 0 reproduces
the CCBA results of Stamp's calculations, allowing for slightly different
coefficients of fracfional parentage. Increasing D° is now shown to
broaden the resonance and reduce its peak amplitudes, In the 1305/2+
exit channels the curves are changed‘by interference with a non-resonant

direct cross-section of approximately 10 mb/sr.

When Do has its full value of -122,5 Mev fms/z, the resonance
is s0 broad that to reconstruct a resonance of reasonable width, the
diffuseness 'a' of the deuteron-core potential well has to be decreased
from & = 1.0 fm to around a = 0,9 fm. Potential well *'B' of Table
2.4.3, with a = 0.9 fm., gives a resonance 34 kev wide(with Do=-122.5),
not far from the observed width of 57 kev, It is a general obse:vation
that as more inelastic channels are coupled, the diffuseness of the
surface regions of both the imaginary and real parts of the optical

potential have to be reduced to maintain the same overall width of,

B8ay, & resonance,
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Figure 2.4.2 shows how the cross-sections vary across fhe
resonance in potential 'B', again from solely the La=2 Ja=3 deuteron
partial wave. To compare with experiment, the non-resonant
contributions from other incoming partial waves have to be included.
Figure 2.4.3 shows the angular distribution of the resonant cross-
"sections from the 9 partial waves up to & including La=3 Ja=3. The
absorption from the two La=3 partial waves is 9.4 & 2.5 mb., so it is
surmised that the higher waves not included contribute less than this.
Also shown in the figure are the experimental cross-sections observed
by Davison et al(1974) and Tryti et al(1975). No effort has been
made to fit the experimental cross-sections by adjusting parameters
of the model, and antisymmetrisation & channel-nonorthogonality effects
have not yet been taken into account, The present results should be
compared with those of Stamp using the CCBA, It is noted that when
the reverse coupling is included, the magnitudes of all the cross-
sections to thé'(d,p) channels are in approximate agreement with

experiment.
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FIGURE 2.4.3
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~

Figure 2.4.3 (confinued)
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25 Including Orthogonality Conditions in the Channel Eguatjions

When the cc system of equations is derived without making all
the assumptions listed in section.2.1, the channel operators and
coupling potentials are often no longer local, The general problem
of arbitary nonlocal terms will be examined in section 2.6, whilé this
gection considers the simpler case where only orthogonality conditions
on the radial wave functions are imposed by the introduction of the
nonlocal potentials. (The existence of these orthogonality conditions
is not necessarily related to the non-orthogonality of the channels'
jnternal states as mentioned in section 2.1 & dealt with in chapter 5.)
Several ways that orthogonality conditions can be fitted into. the CC

4

formalism will now be given, in anticipation of their appearance later.

First, consider reformulating the Schrddinger equation
' ..(H - E)] £ =0 so as to require all solutions f to be orthogonal to
some arbitary vector 'u' : <ul|f >= 0. If projection operators P & Q
ere constructed by P = |u><u| and Q = 1 - P, the orthogonality
condition is Pf = 0, or (1-P)f = Qf = £. Note, however, that because
of this condition, the original Schr8dinger equation Ef = Ef is not
in general satisfied, Thus, the rest of section 2.5 strictly looks
not at reformulations of Ef=Ef, but at reformula£ions.vithin-én
equivalence-class of Schrddinger equations that differ from Ef=Ef
only én the addition of kinematic projection terms, etc., without
changing the dynamics. of the potentials etc. in the Hamiltonian H.

The simflest change to (H-E)f=0 to enforce Qf=f is to apply

H-E to Qf instead of to f, and later use Qf=f in the E teim.

Thus B-E)ar=0
¢« 80O HQf = EQf
80 QHQE = EQ2f = EQf as Q is a projection operator,

finally QHQ £f=E £ as Qf=f.
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The form QHQ is Feshbach's standard form (see Feshbach, 1968)

for an Hermitian effective Hamiltonian which restricts solutions to
the subspace Qf=f, ie. Pf=0. For if w; multiply QHQf = Ef by P, and
use PQ=0, we have E.Pf=0. If the total energy is not zero, E£0 implies
Pf=0, so the orthogonality condition <u|f>=0 is satisfied as required.
This result may also be seen by the following reasoning: The effective
Hamiltonian QHQ has the state 'u' as an eigensolution ;t zero energy
E=0. As QHQ is Hermitian and independent of *E', the solutions f to

QHQf=Ef at all other energies must therefore be orthogonal to 'u',

Secondly, the orthogonality condition may be imposed by a non-
local potential Vu_(depending on 'u') in (H kS Vu --E.)f = 0, These
potentiala are not uniquely defined. One form ma; be derived from
the effective Hamiltonian QHQ of above, following Saito(1969):

QEQ £ = E £ |
(B = E)f = (H - QEQ)f
= PH.f + (1=P)HP.f
Note that any muliiple of (1-P)APf = (1-P) [A,P]lf, for any operator
*A%, can be a2dded to the right-hand side of th; above equation and,
provided E#0, we can still prove that Pf=0 by pre-multiplying by P.
Choosing A = -H, the equation simpli{}es to
(H - E)f = PEf
= u <u|H|f> , using the defintion of P,

go that, in its simplest form, the Saito potential Vu is =PH,

Both of the above methods are successful since they shift any
solution f=u to zero energy E=0. It is possible however to write down
a. potential to shift %this unwanted eigenstate to any nominated energy
E. = e, The pofential is V: = eP, and it can be added to either of the

above equations to shift the spurious eigenstate f = ug
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(eHQ + eP = E)f =0
or (H =~ PH + eP - EJ f = 0, respectively.

Premultiplying either of these by P, we have (g-E)Pf:O, so that
E #£ e implies Pf = 0. The shifted level 'e' should be chosen as
far from typical working energies E as possible. If desired, e
can be made dependent on E, as suggested by Schmid et al(1976).
For example, the functicn e(E) = (E2 + ei)% with eO#O would impose
the required orthogonality conditions without the presence cf any
spurious bound states at finite energies.

An alternative proposed by Kukulin et al(1978) is to take the
- 1imit e » » directly, in which case the Saito potential is not
necessary. If (H +eP -E) f, = 0y Kukulin et al prove that

= +

lim Pfe = 0, 80 that the orthogonality condition is satisfied in the
ff:lt. There is no spurious bound state for any energy E.

In actually solving numerically the coupled-channel equations
subject to orthogonality conditions, either we use one of the potential
forms given above, or we use a more direct numerical condition.
Because all the potentials are non-local, the methods of section 2.6
will ©be needed to handle them. This means that enforcing the conditions
by a potential is more complicated than the following method which
puts them in as extra numerical conditions when solving the coupled
differential equations. The method dates back to Frantz et al(1958):

let £, be a homogeneous soln. of‘(H—E)f1l= 0, and

let £ be a particular soln. of (E-E)f, + u = O that has only out-
going waves asmptotically. Then the linear combination f = f1+c£u
satisfies <u|f>=0 for some ¢, in fact for c = -«u]f1>/<u]gfm The
method can be easily generalised to any number of orthogonality cond-

{tions on any selection of channels in the coupled-éhannels system,
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2.6 Non-local Potentials

In this section, we seek to solve coupled equations that
include nonp}ocal potentials and couplings. When non-localities are
present, the step-by-step radial integration procedure'of Buck, Stamp,
& Hodgsonﬁis no longer applicable unchanged, and to solve sets of

equations like ' :
(255 s 0, -2 )e,@ + T [x e 2,60 e =0
"idrz + b(r) - | i + - nxij Tyr 3 5 = |

-

J=N ~
)) Ky £5 = 0y

(ie. like (”i'ai - Ef_)f 3=1__ 3

i L

where H, are local and Kij are non-local operators)

various approximations have to be used.

Two kinds of approaches are possible. The first is to look for
somé local egquivalent to the full nonlocal potential, and then to
use that local potential in the CC calculation in the usual manner.
The second approach is to use the full non-local potential itself
in fhe CC calculations, either iteratively, or via eigenvalue

expansions into sums of separable nonlocal potentials,

\

The first approach uses a local equivalent potential. If the
exgct wavefunction were known, fi(r), then a local potential exactly

equivalent to K, , would be sinmply

_[Kij(r,r').fj(r‘) dr*
£,(x)

However this expression, as well as being complex-valued, has poles

i

Ui;act(r)

wvhere fj has zeros. Thus it is usual to seek approximate expressiona
that yield well-behaved local equivalents Uij(r), and that do not
require knowing the exact fi(r). The task is made much easier when

Kij has only short-ranged nonlocalities, ie. vhen Kij(r,r') becomea
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small when lr—r'l is larger than some 'nonlocal range'. For the range
less than the wavelength of fi(r), Frahn & Lemmer(1957) preseat an

teffective mass! formula for U, ,. Perey et al(1962,1964) give a

J
'local energy approximation' that still holds when the range |r-r'l,
though a small fraction of r or r', is larger than the local fi
wavelength - as is the case with short-ranged potentials at high
energies. Georgiev et al(1978) and Sinha(1975) use related methods.
When the nonlocal potential is directionally-dependent (eg. the .
potential when the Pauli Principle‘is'included), Austern(1970,1975)
uses a similar 'local-momentum approximation' of the WKB method.
Almost all of the above methods use a Tlocal wavelength'
Mx) = 2n/k(xr), where k(r) is the modulus of the local momenfumf
k(x) = 2%(3 -~V(r))%. The V(r) is the total potential, either an
empiricgl optical-model potential, or one derived self-consistently

to include the final local equivalent potential itself, as suggested

by Georgiev & Mackintosh(1978).

Vhen the nonlocalities of a potential are not short-ranged
(eg. with separable potentials such as the Saito orthogonalising
potential), these methods for local-equivalences are not expected
to ﬁe so accurate. This has not been‘investigated.in detail in the
present work: methods have instead been found which can handle
nonlocal potentials of arbitary range.

The simplest such method is to iterate on the non-local terms.

A sequence £; .o fg is calculated using
o
(Hi - E) £y =20 -
U - nn- n.1 —
and (Hi E) £y dxf_ Ky fj for n=1,2,3,.¢

This sequence will converge everywhere if the maximum eigenéalue of

(Hi --E)-1 K,. hag absolute value less than unity. It could diverge

i3
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either when the Kij(n,r') are large, or whén an eigenvector of Kid
is near a resonance of Hi-E, that is, near a pole of (Hi-E)-1' It
is clear that if E is near the energy level of a resonance of Hi’
then the method is numerically unsound, as slight changes in the
ko1 driving terms lead to large changes in the resonant wave-
function £7,

‘ Vhen the Kij havioié:?th:ffects and'resonancea are unimportant,
Buckingham & Massey(1942) A lterative method to be most satisfactory
for including in their model the residual nonlocalities of the

antisymmetrised folded potentials in neutron-deuteron scattering.

When the eigenvalues of the Kid are not small, but resonances
are still known to be unimportant, it is feasible (following Perey
& Buck, 1962, and Reeves & Owen, 1969) to improve the convergence

of the method by subtracting a certain local potential U,, from K

ij ij?
end adding it to H,. The iteration equations are then
0 N (o}
(B, —E) £; + ) Uij(r) fj(r) = 0
N L N
and (Bi-E) t? + 321 Uij'fg = - 3£1 (Kij - Uij) fg’T

This holds for any Uij’ but if we choose something near a local

equivalent of Kij’ then the maximum eigenvaluesof the residual -

Kij-uij would be much reduced, and the convergence of the iterations

improved. The Uij cannot however be the exactly-equivalent local

exact

eXact jefined earlier. For, although the U3 have

i)
imaginary parts, these do not lead to overall absorbtion or generation

potentials U

of flux because, when the K

i3

are Hermitian (Kij(r,r')=Kji(r',r) )

there iq a conservation condition asserting that any flux absorbed
must also reappear elsewhere: I”Im(Uexact(r))|f(r)|2 dr = 0.

: 0 2

Because the Uij will be used with wave functions fn different from
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any used to form any precalc&lated Uid’ this conservation will not
be exactly satisfied; and unitarity of the coupled-channels system
will not hold. I think it is safest not to a.llou.U13 to have any
imaginary parts at all. Thus parts of Kij -~ the flux-transferring
parts — must always be treated iteratively. This limits the cancell-

i
ation in the (Kij-uij) residual, and restricts the convergence improve-

nment attainable.

A precise method of treating the nonloca; parts of Kij (one
that preserves unitarity exactly) is in fact possible, provided
they can be written as sums of separable forms. For the CC equations
can be solved exactly with a separsble nonlocal potential: one of
the form |w>k<w|, or Kid(r,r') = w(r) k w(z'), for some vector W'y
and some magnitude 'k'. The solution is as follows: let f1 and fw
be the homogensous and particular solutions of (H—E)f1=0 and
(B-E),f' + w = 0, respectively. It can then be easily verified that
the linear combination f = f, + ¢.f,  with c = k<w|f1>/(1-k<w|£w>)
satisfies (H + [w>k<w| = E) f = 0.

Furthermore, by an eigenvalue expansion, any finite non-local
. potential Kij canbe approximated to any desired accuracy by a finite
gum.of separable potentials Kij(r’r:) - ézjluijp(r)> kijp <wijp(r')|.
The full CC system thus becomes

N Qij
(8;-E) £ + 321. P__;_ |9y 3p >Eg5p<P3plfy> = O

which can be solved exactly by a multi-channel generalisation of

the above method.
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Chapter 3 The Pauli Principle

According to the Pauli Exclusion‘frinciple, no two indistinguishable
nucleons may be in the same quantum-mechanical state, This can be
maintained by requiring that the system's wavefunction ‘Y(r1, oe ,rn)
be antisymmetric for nucleon exchanges. That 15, using the exchange

operator P, . that interchanges the coordinates of the i'th & j'th particles,

ij
Pij ¥(e zy . ry )= ¥ (. Ty Ty )y the Pauli Principle requires
Pij\y(o ri.rj o) = - ‘y(o riorj 0).

The negative sign in Pi ¥ =« ¥ marks anti-symmetrisation, which holds

J
for Fermi-Dirac particles such as protons and neutrons, It is also

sufficient to imply that two protons (or two neutrons) can not be found
in the same state. For example, consider two indistinguishable nucleons

in states w1(r1) and wz(rz). We can then easily construct an antii-

symmetrised (but not necessarily normalised) system state ?(r1,r2) as

¥(rqer,) = 2-'é (wy(xvy(z,) = wylz,)vy(zy) ) -
It is readily verified that w(r1,r2) = - w(rz,r1), and that if w,=w,
then y= 0. This is a mathematical statement of the fact that if the
two individual states are identical, then the total wavefunction
vanishes, and hence cannot be normalised. Such a situation is therefore
physically impossible. Conversely, if the system wavefunction is not

to vanish, the individual states must 211 be distinct.

Consider now the idealised scattering situation of a nucleus of
'A' identical nucleons being approached by another nucleon in a state
u(ro) relative to the nucleus. Assume that the internal state of the
nucleus is known to be at all times ¢A(r1, e ,rA) (normalised and

antisymmetrised internally), and that we wish to construct an anti-
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symmetric wavefunction Y for the total system of A+1 indistinguishable
nucleons. That is, we seek an antisymmetrising operator (! so that

¥(r oxys o ,rA) ='Cl u(ro) ¢A(r1 - rA) is antisymmetric. Such an .

1
operator 61 can in fact be given in terms of the permutation operators Pijz-

A = @a)F (1 - 3? Poy Jo
3=1

Thus the antisymmetrised VY contains a sum ie.

,u(r°)¢A(r1 "’) " u(r1)¢A(1j°ir20°°): - u(r2)¢A(r1 'rO'rj,'.) - eee

Now that an antisymmetric wavefunction for the system has been
constructed, it is used in Schrodingers equation in conjunction with a
Hamiltonian for the A+1 nucleons. Since the state ¢A of the nucleus
is assumed constant and known, the Schrodinger equation in A+1 variables
can be reduced to a single nucleon equation in only the scattering
coor&inate T,e The possibility of ¥ becoming zero because of two
individual states becoming identical must be taken into account, and
here the best treatment is the now standard one of Feshbach(1958, 1962,

& 1968), This treatment is summarised in section 3.1.
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361 Feshbach's Theory of Antisymmetrisation

In Feshbach's Unified Reaction Theory, a distinction is made
between the physical wavefunction ? and the wavefunction used in any .
model, Since the model wavefunction must always be the more restricted,
it is denoted by PY , for some projection operator 'P' which projects
from the physical space to the model subspace. In the present case,
the model subspace for Py is the spaée of all anfisymmetrised
products of a scattering Qavefunction u(ro) with a known nucleus

ground state ¢A(r1 - rA)z P \y(ro,r1 os) =(ﬂ,u(r°) ¢A(r1 B =

Since we seek a one-particle Schrodinger equation for the scatter-
ing state u(ro), we further project P Y onto the nucleus state ¢A’
and as usual integrate over all the internal coordinates Ty ee Ty

to define a new 'projected! scattering wavefunction U(ro) H

Uz,) = <, |P¥> = <4, | Ouf,> (1)
= u(ro) - A <¢A(r1'to'rA) |¢A(ro’r2""rA)> u(r1_)

2

‘m= (1 =K)u 53;

where 'K' is a new integral operator defined by its kernel function
k(ro,r1) = A <¢A(r1 e rA)l ¢A(r°,r2 e rA)>, so U = (1-K)u means
U(ro) = u(ro) - {'k(ro,:1) u(r1) dr, . IfPY = CLu¢A is normalised
'<6Lu¢A|an¢A'> =1 e.g. for a bound state, then <u|1-K|u>= <u|U>= 1,

Note that neither u nor U by themselves are normalised.,

The scattering wavefunctions u(ro) and U(ro) (which multiply ¢A’
and are projected by ¢A' respectively) are asymptotically equal, and
hence give identical scattering cross-sections etc, But they are
different in the internal region because of the operator K which
describes all the kinematic effects of antisymmetrisation. The effect

of 1-K in U = (1-K) u is to remove all components of u.that overlap
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with any internal states of the core nucleons: it is a kind of 'blocking
operator' for the Pauli Exclusion Principle. If the core state ¢A

vere a simple Slater determinant made of orthonormal wavefunctions Vs

¢A(r1,r2, .o ,rAI = A-% w1(r1) cee wA(r1
(

)
r,)

V2(11) oo 'A 2
: i
wA(r1) . wA(rA)- " (1)
theﬁ 1=K 1is Jjust a projection operabor removing any wi-parts of u &
A ’ 3 o
1=K = 1= ‘12::1 |‘vi><\w1|’ 3 ~ (5a)
*.

or k(ro,r1) = 121 wi(ro) wi(r1) . (5v)

Thus if u were equal to one of the core states wi, then Ku=u, and
U = (1-K)u would be zero. The total wavefunction P Y would also be zero,
as CLV1¢A = 0,2nd so could be added in arbitary multiples to any other
term Clu ¢A without changing the latter. Feshbach calls in the
general case the solutions v1

i
the 'supererogatory solutions', and points out that the elimination of

that are totally blocked (1-K)w1 =0

these superfluous terms would of course be useful from the points of
view of efficiency and convenience. More importantly, in any numerical
method it would be intolerable if the desired solutions were not unique,
and could be swamped by the addition of arbitarily large nmultiples of
these supererogatory solutions. It is most advisable to identify in
advance'and project out these superfluous solutions, to ensure unique

solutions to a numerically stable method.

To identify the supererogatory solutions (those fully blocked by
1-K), we need to find the actual form of the blocking operator K, and

consider its eigenvalue expansion K wzi = Xi wfi. The operator K

is in fact just the single-particle density-matrix operator for the

antisymmetrised nucleus state ¢ Sometimes this is known from other

A.‘
nuclear structure calculations, but more often than not the density
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operator K has to be constructed from simplified nuclear models.

If the nucleus state ¢A is taken to be a product of 'A' single=-
particle states Wi i=1 .. A, with no dyn#mic corfelations apart from
antisymmetrisation, then ¢A has the Slater-determinant form of above.
The K operator is the projection operator given earlier, and has eigen-

1
vectors w, = w

i all corresponding to unit eigenvaluea\Ai = 1.

i

r

If the nucleus has multi-nucleon correlations, and hés to be written
as & linear combination of product wavefunctions, and/or has excited
states whose angular momentum couples to that of the incoming particle,
then K is correspondingly more complicated, and has one of the forms

derived in Appendices 1 & 2.

Whatever the density matrix K of the nucleus may be, it always has
the following properties :

(1) K is Hermitian, so the eigenvalues )\, are all real,

i
(2) K is positive definite : for any u, <u|K|u> >0,

| 4 > 0. | (6a)
(3) 1-K is also positive definite : . . .. . e

8o all the Ai are positive definite s A

for any u, <u|1=K|u> = T <Qu ¢A| QA u ¢A} > 0.
so all the A, < 1. - (6v)
Vith (2), we have 0 < Ay < 1. (6¢)
(4) Tr K = A : the density matrix describes A nucleons.
. 2 ;
(5) K is bounded : J'dr1 fdr° |k(r°,r1)| < A. (1)

Thus ;k(ro,r1) +~ O as either r  or r, becomes large.

o
This is the reason for the remark earlier that u(ro) and
U(ro) = (1-XK)u are asymptotically equal, and hence give identical

phase shifts; cross-sections, etc.
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In general the operator K can always be expanded in terms of its

eigenvectors vii as

k(ro,r1) = '12 wii(ro) . Ai w:i(r1)*'. (8)

The case where an eigenvalue Ai = 1 requires special considerations
because when we solve U = (1=-K)u for u, the expansion of (1-K)ft in
terms of the eigenfunctions of X will show a pole whenever 2 Ai eigen=

value is unity. The corresponding eigenvector will be wl, and because

K wl = 1.v1, we have (1-K)w1 = 0, and hence <w1|U> = 0. We find further

that Ckw1.¢A = 0, so vl is one of the supererogatory solutions that are
completely blocked by antisymmetrising, and should be avoided in solving
the equations. From <w1|U>»= 0, U must have no component prﬁportional
to any wl, 80 the inversion u = (1-K)-1 U can be carried out without
difficulty by simply Ieaving out all the eigenvectors of K that corres-—

pond to unit eigenvalues. Define K' to be the remaining operator

k' = z’ »” lwiAi> A <v31| . (9)

80 the solution for u is (1-K”)-1 U, always well defined and containing

no supererogatory components .when U has none &

: <vx1 >
u(ze) = J _.i_l_].l_

wi(ro): °
1,A1,£1 1=

Note: If we define PA to be that part of K not in X', then K = K* + PA

and (1-K) = (1-K')(1-—PA) $ P,is the projection operator of fully-

A

1 1
blocked states 1 P, = % [wi:><wi| 3 and P, U=0.,
1=t
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Now that the model wavefunction P Y =u #.  has been defined,

A
and any ambiguities removed, Feshbach's theory now gives a Schrodinger

equation in only one variable T, for the scattering wave functions

u(go) and/or U(;O).

First, a wave equation for Py is obtained by restricting the full

7ﬁam;1tonian'H ' for the complete A+1 = body system to the model

full
subspace defined by the projection operator P. The model Hamiltonian
YH* in the subspace, in which the core nucleons are always in the state

¢A’ is in terms of H .,

e -1
H = PH ., P + PH. ..Q (E" - Q Heon1 Q) Q Hp 11P» where Q=1-P.

More often though, the effect of the remaining 'Q' part is neglected,
end H is written down directly for the scattering-particle + nucleus-
1n—state-¢A system, €.g.

H(£°,£1 oo "I;'A) = T(_r_o) + VOA(_I_‘_O,_1;1 ,oo) + HA(£1’ o "r'A)

wvhere
T(go) is the kinetic energy operator for the scattering nucleon,

voA is the sum of potentials between the scattering nucleon and
. A
the core nucleons : V , = 321 72(50,53) where 72(50,51) is
the nucleon-nucleon interaction, and
HA is the nuclear Hamiltoniar : HA¢A = eA¢A for some energy e,

Apblied to the model subspace PY =(Ju ¢A' the model Hamiltonian

H gives, for total energy E, the Schrodinger equation in A+1 variables

H Iau ¢A> = Ela-'u ¢A> ? (108.)
which may be rewritten as
H|lQ. @,>u=E|Q.§> u, (101b)
vhere henceforth |(L. ¢A:> denotes the antisymmetrisation operator on one—
variable functions u(;o) giving the A+1 - variable wavefunction Clu¢A.

Its Hermitian transpose <QA¢A| is the operator <¢A|Q_.
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/

To derive an equation in the one variable I, ve project ontf)
the core state, us;*lng one of the operators <¢AI ) (1'PA)<¢A| ’
<a'¢AIE <‘¢A|CL , O (1'PA)<O'"¢AI « The first choice <¢A‘ is the
simplest and is used by Feshbachj the second and fourth make explicit
the treatment of the supererogatory components; while the third and
fourth are better in giving Hermitian operators, and lead in section
4.2 to a useful series of Hermitian approximations. Applied to the
equation H |a,¢A>‘u=E ‘Cl_.ﬁfu, the four operators are equivalent, as
on the right-hand side <¢A|a"¢A>’ (1-PA)< AIQ.¢A> ,<Q.¢A|a,.¢A>, and
(1-PA)<02.¢A|CL.¢A> all equal (1-K)., As the left-hand side starts with
the (A+1)-body Hamiltonien H (symmetric for two-particle interchanges)

operating on an antisymmetrising '‘Q', we have

<¢A|HQ= <¢A|m2 = <¢A|<lHCL as H is symmetric

=<0,.¢A| HQ by the definition of <a.¢A| ’

<¢.¢A | EQ = (1-PA) <CL.15A| EQ as C[w1¢A =0
= (1-p,) <, | EQ,

"and hence the equival_ence of the four equations

<¢A |E| Q. f>u = E (1K) u - (11a)
(1-p,) <4, |E | Q. ¥,> u = E‘ (1-K) U, (111)
<Qe ¢A |E | -~ ¢A> u = E (1K) u , and (11¢)

C{-P,) <Q. B, |H | Q. F>n E (1-K) u . (114d)

As Krause & Mulligan(1975) correctly point out, these four
equations all admit in their solutions, for any value of E, the
addition of arbitary multiples of the supererogatory components w}_.
Although the w)

i
do not affect the scattering phase-shifts, etc., it is advisable as

are non-zero only in the inner reg_ion and therefore

mentioned earlier to remove all components w1 from the solutions by

i
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requiring'<w1| u>= 0, to ensure unique solutions to a numerically
stable method.. We must therefore change the equations so that all

their solutions have zero multiples of the supererogatory components
g R _

i3
equation by itself implies that its solutions are all orthogonal to

Y and this should be checked by verifying that the modified channel
the wl, ie that PAu::O. The solutions of all 4 equations will be other-

wise the same, to answer a query of Krause & Mulligan.,

Any supererogatory additions to the solutions 'u' of the equations
are removed by changing their right-hand sides from E(1-K) u =

E(1—K')(1-PA) u to E(1-K') u, so

<f, |E|L - §,>u = E (1-K") u, (122)
and similarly for the other 3 forms, By operating on any of these
4 modified equations with <w1|, and using'(1-PA)w1 = 0, &Clw1¢A=0,
we can prove when E#£0 that <HB u>= 0, ie, PAuzo, so all solutions

'u' of these eduations have no supererogatory components.

Instead of changing the u-equations to remove the wl, equations
could have been derived for the *'U' function using the u = (1-K‘)-1U
relation given 2bove., Four equivalent equations for U are hence

<g, lela.g> (1-k')"' v = E T, (13a)

and similarly for the other 3 projections (b,c,d). It can easily be shown
that, by again projecting with <"11L the solutions ¥ to (13a-d) all
satisfy <w1|U> = 0, and that when H is symmetric the 4 equations have
identical solutions. If an approximate 'H' is used that is not

exactly symmetric, then in general only the sets' (b), (c), & (&)
equations still give <wllU>=0.0f these three, the (b) &(d4) are better

in that with their (1'PA) factor, they explicitly remove the supererog-
atory components whatever approximations may be used for <¢A|H|a.¢A>

or <a.f, |E|d.#,>.
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Hone of the above equations for U or for w are of the form

f = E f for some Hermitian effective Hamiltonian He To derive

eff £f£°
such an equation, Feshbach describes how it is necessary to define a

third scattering wavefunction_}?(ro) by
Q- (1-1{)’5 u = (1-x"),";“ U. (14)
The square-root operator is always real, as all of the eigenvalues of
K* are less than unity, by construction, inequality (6b), and
awtYE _ v % . S '
(1-k*)2 = z lv11>(1- AgJ® wid| . (15)
A _ .
The Q(ro) is again asymptotically equal to both U and u, so any one

of the three is sufficient for cross-sections ete. The Schrodinger

equation for Q is obtained from eqn, (1fc), or better from (12¢), and is
Gx)Fea. g rja by k) o) = B oal)s  (16)

which can be abbreviated H_ Q@ =B 8, with Hermitian H

£ £

One advantage of @ against u or U is that Q ec¢an be directly

normalised. For example, for a bound state
<AQuf|A ug, > =1

fe. <@ (1-K')-% <Q. ¢A| '3 N ¢A> (1qK'),-é 2> =1

ie, <n[(1-xv)’5 (1-k) (1-10)"1’ [@> = 1

fe. <@[(1-p,)|2> =1

-de. <Q|Q> = 1 once supererogatory components are removed by requiring

PA Q

For scattering states in the continuum, the QE(r) still form an ortho-

=00

normal set '42E| 5 = §(E-E'). These orthonormal properties of &

reflect .the fact that it is the eigensolution of an Hermitian operator.
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Summarising, there are three physically equivalent equations for

the three kinds of scattering wavefunctions u, U, Q. :

(k)™ (1-2) <8,/ B|O. §, > u = Eu, (12a%)
<A, BE|O. 8, >0-k)T' U = BEU, (13a)
and (k0" <a. g BlQ.f, >0k a = B o, (16)

(vhere the forms (1-PA) < d and <. ¢A| are interchangeable here.)

"All three equations are sufficient by themselves to imply
' 1
PA u = PA U= PA$2 = 0, in each case relying on <wi[<£l. ¢Al = 0 or

SVI|(1-PA) = 0 for fully blocked components w1 #

The Hamiltonian expressions <¢A|ﬁ| Q. $,> and <Q.f,|H | .4, >
that occur in the above Schrodinger equations are called 'matrix
elements' of H : the expectation values of H for model basis directions

along |¢K' or [CL.¢A>. It should be noted that any approximations to

1
-

expression of KL.¢A>, for example, should satisfy |Cl.¢A>|w1>=o, This

these matrix elements should still block the w, exactlys: any numerical

may be ensured by constructing PA frem the numerical wl solutions, and
then including an extra (1-PA) factor in the matrix elements. Thus the

channel equation for @ , say, that is numerically the more stable is
(1-2) (k)P <a.gm| g, .(1-xv),'%] @ =EQ, (16')

wvhere the term in the square brackets may be replaced by some expression

that is closely equivalent numerically.

The general forms for the matrix elements will be derived in Chapter
4, in the context of examining the antisymmetrised interactions between
a deuteron and a nucleus. The case of one nucleon outside a nucleus of
'A' identical nucleons is simpler, and, anticipating Chapter 4 a little,
the two matriz elements have the following slightly different approx-

imations ;



By | T(x)) +V,, +H,| a g,
= [T(ro) +V, 4 eA} (1-K) (17)
and <Q. f, | T(r)) +V, +H |[Q. 4>
= (1-K)? [ () + ¥, + eA} (_1-1{)3‘r _ (18)

where Ya is the overall core-nucleon potential, The Va potential has

a local 'direct! part Yb and a non-local ‘exchange! part YE H

v, u(ro) P VD(ro) u(ro) - I VE(ro,ri)'n(r1) dr, fof any 'u’

wvhere _ .
vD(ro) i Iva(ro,r_') E(r1,r1) dr, = 'rr(vzx) in short,

and VE(ro,r12 = Vz(ro,r1) k(ro,r1) = (Vz.K) in short;
Vz(rb,r1) = nucleon-nucleon two-body potentials
& k(ryr') is the kernel of the density operator K of the nucleus,

For notational convenience, write V_ = Tr(sz) - (Vz.K). The two

parts may be represented diagrammatically by

VvV, ¢ V., ¢

D u x———T————; rb E ro . r1
'V
:72 : 2
]
]
core r1 i r1 r°
direct _ exchange

The direct part VD

present in models which ignore antisymmetrisation.

sy &@lso called the 'folded potential'®, is the only part

As will be exﬁlained in Chapter 4, the above approximations for
the matrix elements are exact when the Aucleus has no nucleon-nucleon
correlations apart from those implied by antisymmetrisation, that is
when ¢A is a Slater-determinant wavefunction and K is a projection
operator (then, K=P, & K'=0). Both approximations are consistent with

respect to shifts of the E=0 origin when K is not a projection operator.
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The three channel equations (12a', 13a & 16) can be written using
the matrix element (1-PA) <¢AIH| CL.¢A} y and, with this matrix element

simplified as above, they become

(1-k+)~" (1-p,) [TP+-Va + eA] (1-p,) (1=k') u = E u(zr,) (192)

(1-?,) [T +V, o+ eA] (1-PA) U = EU(), (19v)

and (1-K')'% (1-PA)_[T +V, o+ eA] (1'PA) (1-K')%_Q E Q(ro) - (19¢)

These three equations may also be written using the Hermitian -
matrix element <¢l.¢A|H| a"¢A:>' and, with its simplified form of

above, to a slightly different approximation the three equations'become

W (1-PA) (1-K')% u =E u(ro) é (20a)

/

A] (1-PA) (1-K')’5U

(1-1(');‘% (1-PA) '[T +V, +e,

(1-K')é (1-p,) [T +V +e E U(r,) , (20b)

- Y

and (1-PA) {T +V, +e, (1-PA) Q. =E or) . (20¢c)

/

To summarise the notation
T + Va = one-body Hamiltonian for scattering particle,
Ya = YD + VE = folded potential + some residuvual non-local ptl,,
.E.- ., = scattering energy in the c.m., frame
(1-PA) on each side of [T+Va) ensures that P, u = 0, etec.,
i.e. that the scattering wavefunctions are all orthogonal
to the components fully blocked by the Pauli Principle,

(1-K") renormalises those components that are not fully blocked.

Only the equations (19b) & (20c) above have channel Hamiltonians
vhich are symmetric and Hermitian, so these two will be preferred to the

other four equationse.
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3.2 The Kinematic Assumption

The Schrodinger equations derived in the previous section aie
different in two ways from those derived by ignoring the Pauli Principle
and the antisymmetrisation it requires. First, there is the presence
of the 1~PA and 1-K' operators, and second, the overall core-nucleon
potential Va has a non-local exchange term in addition to the usual
local term. The first difference, as it affects primarily the wave
function definitions and projections, is largely kinematic. The
second difference, as it affects primarily the detailed dynamics of the

nucleon-nucleus potentials, is largely dynamic,

The kinematic assumption is to assume that all the significant
antisymmetrisation effects are adequately accounted for kinematically.
That is, once the kinematic terms are included, it is a good approx-
imation to replace the non-local potential Va by some local effective
potential VL such as an optical-model potential, Given this 'kinematic
assumption' and the use of such a local effective potential (not
necessarily just the direct part of Va), the non-local effects apbear
only with the terms (1-K') which renormalise components not fully
blocked, and with terms (1'PA)’ which‘block the supererogatory components.
With Buck et al(1977), "we take the view that the specific effects of the
Pauli Principle should not be sensitive to the detailed dynamics of
the nuclear scattering as expressed in assumptions about the inter-
nucleon forces. Ve should like therefore to have a theory in which
antisymmetrisation constraints and dynamical conditions appear in a
factorised form instead of being 'inextricably mixed uy as in the usual )
résonatiﬁg group method (RGM)." The RGM uses the full antisymmetrised

Hamiltonian H,constructed directly from nucleon-nucleon forces, in
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i
matrix elements like '<CL.¢A| H| CL.¢A=', and makes no distinction
between 'kinematic! and 'dynamic' effects of antisymmetrisation. Not
surprisingly, the detailed integro-differential equations of the RGM

are complicated to write down and hard to solve numerically.

Let it be clear what effects are precluded when we leave out the
'dynamic exchange terms, Consider the case, say of modelling 136

120 core, The Op shell in the 120

structure as a neutron around a
core is only 2/3 full, so the neutron can go there, as well as into

the s-d shell at a higher energy. There will be few antisymmetrisation
effects of any kind when the neutron is in an s-d state, but we would
expect both the kinematic and dynamic terms to be large for a p-state
neutron. The 'kinematic' terms will first block the neutron from

any fully-occupied p-shell state, and then renormalise the neutron's
amplitude where it overlaps with any state only partially occupied by

e 120 neutron. The 'dynamic' terms would block the occupied states
too, if this were not already done by the kinematic terms. But more
importantly, only the dynamic terms will shift the energy levels of the
neutron + core eigenstates, That this does happen is obvious exper-
imentally : the p% and p3/2 states of 130 are within an Mev of the s%

and d states, indicating that somehow the energies of the p-shell

5/2
neutron eigenstates are much higher than would be expected for the
neutron occupying an eigenstate of a local potential. This rise in the
p-state eigenenergy can be attributed to the large dynamic effects of

antisymmetrisation, when a neutrén interacts with 4 other neutrons in

a shell that is altogether 5/6 occupied.

Thus when the dynamic exchange terms are neglected, though
scattering resonances and bound eigenstates may be renormzlised to

the correct amplitudes (zero, if fully Blocked!), they may well occur
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at the wrong energies, especially if kinematically they are partially
or largely blocked by core nucleons. . So when we use a local potential
VL instead of the more accurate non-local Va, we should be aware of
this ahoftcoming, and if necessary slightly adjust the parameters of the

local potential so that its resonances and eigenstates appear at their

observed energies (as to some extent is common practice already),

The shortcomings of using only a local approximation to Va are
hence not nearly so serious in scattering calculations as they would
be in structure calculations. In structure calculations that include
antisymmetrisation properly (eg. those of Friedman, 1967), the primary
results are energy-level diagrams, whereas in scattering analyses, the
primary results are the wave function amplitudes, especially
their phase shifts. The energy levels of eigenstates have only
a seéond—order effect on the scattering amplitudes, through the placing
and widths of resonances. We must therefore expect, when using a
scattering model derived with the kinematic assumption, to have to
feed in the positions of any resonances. Given that, they should

then appear with good amplitudes and widths.

Using the kinematic assuption, the Schrodinger equations
of section 3.1 are simplified : the channel operator T+Va+eA is replaced
by HL =T+ VL + €, which is entirely a local differential operator.

This begins to make the numerical problem more straightfoward.

We now deal specifically with the kinematic terms (1-PA)’ (1-k'),
and (1-K) = (1-PA)(1-K'). still in the channel equations. The first
investigators'(eg. Saito, 1969) neglected the partially-blocked compo-
nents, and assumed that all scattering wave components were either fuliy
blocked, or not significantly blocked at all. That is, they assumed

that all the eigenvalues of K were either unity or zero, so 1-K = 1-PA’
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and K* = 0. In this case, all the channel equations of section 3.1
reduce to (1'PA) B (1-PA) u(rO) =E u(ro), and identically for
U(ro) and _ Q(ro), As shown in section 2.5, this equation is equiv-
alent to the ordinary local Schrodinger equation HL u=EF u with the
associated orthogonality cénditions P u=0, or <w1 |u>'= 0, and is easy

A

to solve numericallye.

This final result is the Orthogonality Condition Model (OCM)
of Saito(1969), and has since been used extensively for a wide range

of scattering problemss see Shakin & Weiss(1975) or Saito(1977)..

Buck et al(1977) now point out the important fact that the 0CM not
only works well when the eigenvalues of K are zero or unity (or close
to these limits, as Saito et al.,1975 show), but aléo gives excellent
results in other cases when the spectrum of eigenvalues of K goes
rather smoothly from 0 to 1. We can of course still orthogonalise to
the fully-blocked states with unit eigenvalues, but it is hard to take
account of eigenstates which have eigenvalues not very near to either
limit. Hence it is difficult to justify replacing 1=K by 1-PA’ and

the neglect of K', even if we include in PA some 'almost forbidden

states' which are.only fully blocked in some limit, as advocated by

.

Saito et 21.(1973).

In fact, we already have a wave equation which clarifies the
situation. Taking the symmetric matrix element <CL'¢AIH|<1“¢A>’
the wave equation for f}(ro) of section 3.1 becomes (with the kinematic
assumption) (1'PA) H (1—PA) Q= E Sl(ro) for any operator K !
That is, we still have an OCM-like equation which can be easily solved,
without neglecting the possibility of partially-blocked states.

Instead, the wave equation uses a renormalised wave function § , and
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this renormalisation completely absorbs the effects of states being

~ only partially blocked : & = (1-xv)é u = (1-K')-;“ U.

Thus, to quote from Buck et al., "the applicability of the OCM
is not necessarily restricted to systems where there are only exactly
forbidden and almost totally allowed states. If there are many part-
ially redundant states ( A# 0 or 1), the OCM may still be valid, but
it must be interpreted as an equation for (1-K')% times the RGM wave
function u. Since u and Q = (1-K')%u differ only for small separations, .
they have the same asymptotic forms and give the same phase shifts in
scattering calculations. This may be the reason that the point has

not been generally noticed previously."™

To end this section, I note that occasionally it is possible to

even further simplify the OCM equations, which are

(1-p,) B, (1-P,)Q =E @

or HL Q =EQ with PAQ.= 0,
where
BL = T + VL + eA
1 1
and P, = % [wy >< vy |

For suppose that the potential VL supported some bound states similar
to the forbidden states wl(ro). Then it is obvious that the higher-
energy bound states and the scattering wave functions of the Hermitian

operétor H. would be orthogonal to the lower 'redundant' solutions, as

L
HL does not explicitly depend on the energy E. The orthogonality

conditions would then be fulfilled just by disregarding such solutions.

If the w1 were eigenstates of T4V

i at energies e say,

L
1,60 (P + V) vi = e, w
g L’ i 171 ?
then (T + v, + eA) Q =EQ
1 1
implies <wy T + VL|Q> = <w1| E - e, »
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1 1
ie. e, <wy|a> = (E -~ eA)‘<wilQ>

so Efe, + ey implies f<w1]9> = 0, the orthogonality

A
conditions,

-~ - This phenomenom, which I call 'natural orthogonality', occurs

. when the scattering nucleon is subject to approximately the same
collective forces as are the nucleons internal to thg nucleus. This
is true to some approximation : whether it occurs accurately in fact
must be examined in particular cases. One way is to find the

commutator [PA’HL] =PH - HP . If this is zero or small, then as

AL L
PA-& HL commute they have a common set of eigenvectors. That is, the
eigenvectors w1 of P, are then eigenstates of the Hamiltonian H_ for

i A

some eigenenergy, ei saYe

L

L If PA & HL do commute, and the scattering states are 'naturally

orthogonal' to the fully blocked states, then even the OCM orthogon-
ality. conditions become redundant. The sufficient wave equation

for Q is finally just HLS2 = EQ , in which all terms are strictly

local. This is what is presumed when fitting local optical potentials

to nucleon scattering data.

One warning about 'natural orthogonality® : it is only useful

when the scattering energy E-e, is well separated from any energy

A

levels e, of the fully blocked states. Presumably all the ey would

be negative, being approximately the eigen—energies of the core

nucleons. The scattering energy E-e, is usually at least positive,

A

80 all is wellj but should inelastic doorway excitations occur, then
E-eA will become negative, The actual energy levels could be 2
checked, but it would probably be safer to include the OCM conditions

explicitly in any such marginal cases.
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Chapter 4 Elastic Deuteron Scattering with Antisymmetrisation

'After having discussed in Chapter 3 the case of a single nucleon
outside a core of many indistinguishable nucleons, we now consider
the case of two distinguicshable nucleons outside a nucleus, _ It will
A be found that two-particle antisymmetrisation effects are naturally
larger than those for one-parficle scattering, basicaliy because of
the variable partitioning of the total energy between the two nucleons.
This will be demonstrated in section 4.1 for the ideal case of all
states being harmonic—oscillator states. The actual physical
gituation is of course more complicated, so in section 4.2 the full
Hamiltonian for the whole nucleus-plus-2-nucleon system is written
-down, This Hamiltonian is then averaged, in a fully Hermitian and
symmetric manner,‘over the state of the nucleucs, presumed known, to
leave an éffective three-body HEamiltonian for the general motion of
two nucleons outside a core. Section 4.3 geces on to find a wave
equation for fhese two particles' joint wave function in configuration

space 92(2?’£n) for a neutron at r and a proton af Iy

This joint wave function still includes all deuteron reactions :
it includes bound deuterons with the form ¢dC£) uin), neutron-transfer
channels ¢n(£n) up(;p) with bound neutrons, proton-transfer channels
¢p(£p) un(gn), and breakup states un(gn) up(gp). (The #'s denote
normalised bound states, and the u's scattering states.) The simplest
deuteron reaction is elastic scattering, for which it seems 92 need
only include ¢d(£) ud(g). Section 4.4 investigates the work of FPong
& Austern(1975) in finding the effect of core-deuteron aptisymmetrisation
on elastic scattering with 2, = ¢d u, only. This is done in some

detail to see specifically the nature of the assumptions made.
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4.1 Estimates using Harmonic-Oscillator States

The Pauli Principle implies that two indistinguishable nucleons
nay nqt occupy the same quantum-mechanical states In the scattering
éf deuterons on nuclei, this means that the neutron in the deuteron
must not overlap any of the states of the neutrons in the nucleus,
and the proton similarly, To compare the wave functions of the
scattering nucleons with those of the nucleons in the target, however,
the states of the incoming nucleons have to found in terms of b & gp
(coordinates with respect to the nucleus centre of mass ), instead of
in terms of r, the internal p-n coordinate of the deuteron, and R, the
distance between the clusters collectivelye. If the nucleus is much
heavier than the deuteron, we have immediately r = Ep -z and
R = %(_r_p + _x;n), but it is more difficult to find the 'core state! of
a scattering nucleon, given only that it is in a deuteron with internal
state ¢d(£) that is moving as a whole with wave function ud(g). In
Chapter 5 we will investigate overlap expressions like <¢nl¢d> U4
for specific neuteron states ¢n(£n), and find that they are in general
complicated integral-operator expressions. However, if both the

states ¢d & u, were eigenstates |nDl & [NL>- respectively of simple

d
harmonic oscillators with length constants 'b' in the ratio 2:1,

then an exact transformation of states is possible.

Given the approximation that the relative p-n state of the deuteron
¢d is the s.h.o. state ln}> for some quantum numbers nl (most likely
n=1=0), and that the collective deuteron - core state uy isl KL >
for some N & L, we can use a Moshinsky transformation (Brody &

Moshinsky, 1960) to find the amplitudes of the s.h.o. neutron states
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|n;1> and of the proton states [n212> (defined to the nucleus' c.m.)e

Each pair has a certain numerical amplitude <1n111 n212 Jo| nml NL Jp> =

|nl NL Jp> = nil <n,1, n,l, Jp| nl NL J p> |rx.‘11 n,1, Jp>
L
nyla
where

p= 2n1+11 + 2n2+12 = 2n+l + 2N+L

is the total excitation quantum number

and J is the total angular momentum (neglecting spins).

ft is now a2 simple matter to modify this combined state to take
the Pauli Principle into account: we just omit from the above sum for

|n1 NL> 2all those terms n111 n212 in which either the neutron

state n111 or the protdn state n212 is already occupiéd by a core

nucleon of the same kind, If for example the target nucleus were

0 with its Os & Op shells full for both protons & neutrons, then the
above sum would be for all n111 n212 except for either n111 or n212
being 00 or 01. If the deuteron internal state ¢d is assumed to be

- exactly |00> s then we can calculate the numerical effect of the Pauli

Principle for a variety of collective states |KL>, 1 Figure 4.1.1
shows the sums of the squares of the removed components, versus

R =041, ee 45, for L=0 ard L=2. The deuteron'g energy e g 3
increases as p= 2N+L above the lowest Os bound eigenstate, with

the scattering continuum E >0 beginning around p=4.

These results show that even when the core is a simple set of
closed shells with no configuration mixing, there is a significant
Pauli bdblocking effect of deuteron states well into the continuum,
This is in distinct contrast to the effect of the Pauli Principle
on single—particle scattering states. Indeed, the blocking of such
single-particle states, using the harmonic oscillator approximation,

is exactly zero, because in the harmonic oscillator all states at
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different energies are exactiy orthogonal, The energy of a deuteron
scattering state, by contrast, is only the average of the neutron

and proton energies : one nucleon can go up in energy if the other
goes down. by the same amount. And as soon as either nucleon would
try to drop in energy as far as an occupied shell, that whole pair

component is blocked by the Pauli Frinciple,

,This fact - that two-particle antisymmetrisation effects are
naturally larger than those for one particle scattering - persists
whén more realistic scattering states are used. It also allows us
very conveniently to make more severe simplifying assumptions and
8till have non~trivial effects that specifically result from anti-
symmetrisation. It becomes practicable, for example, to assume that
the internal nucleons of the core move in eigenstates of the potential
that governs the scattering of a further nucleon around the core,

The widely-used Hartree-Fock approximation assumes all the internal

nucleons are in eigenstates of the same potential, but here the additicnal

assumption is that this collective potential is the same for the 'A"
core nﬁéléonsmand the 'A+1! nucleon‘éystem, including the scattering
nucleone. With single-particle scattering, this assumption would

mean no specific antisymmetrisation effects, since all nucleon states
would be eigenstates of the same potential, but at_different energies
and hence all naturally orthogonal to each other. Not so, however,
witﬁ the scattering of multi-nucleon clusters, for as explained above,
there is Pauli blocking even if only one nucleon drops in energy to
the occupigd levels of the core, This is quite likely, as the energy

of a cluster is only the average of its single-nucleon energiese.
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4,2 Antisymmetrised Matrix Elements for Deuteron = Core Interactions

In this section, formulae aré derived for the matrix elements of
realistic Hamiltonians, when fully antisymmetrised wave functions are
used to describe the state of a proton and a neutron outside an inert
core of'both protons and neﬁtrons. In sections 4.2 & 4.3 the external
pair of nucleons will be described only by their joint wave function

uzcgp,gn), so to begin with we will derive a three-body Hamiltonian H2

for those 2 nucleons interacting with the core.

The total model state P for the system is defined by the form

PHr oz oz oo ) = [ Gy mp(mpezy) 4@ .- z,) >
=[Oy, . ¢A> u, , an abbreviated notation,

where
¢AC£1 .o EA) is the core state of the 'A' nucleons, The ¢A wave

function is assumed to be already antisymmetrised,
The (]2-A ie the antisymmetrising operator between the external neutron
and proton and their indistinguishable corresponding nucleons

in the core.

If the core consists of 'N' neutrons and 'Z' protons, A = N + Z,

then
P (2 yT s oo X oL asX )
("p atmy, Thy TPy TPg
= a ¢ ! i 5 ) ¢ r ee I o ee T ) >
l 2=N7Z 2(—'p - NZ'(—n‘l; 'TLN "'P1 "PZ
wvhere
N Z
.. -% %
Qg = (W1)75 (1= ] By | (Z41)7° (1 = Z Pyl o
i=1 j=1
: . '
Pni exchanges the z coordinate with‘gni, that of the i'th
neutron in the core,
and ij exchanges proton coordinates gp &'EPJ similarly.
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The Hamiltonian H for the full system of N+1 neutrons and Z+1
protons has been given in section 2,2 , We now wish to calculate

antisymmetrised matrix elements of H, such as (¢NZ|HK2 >

2=NZ ° ¢NZ
or <O,_m ¢NZ|H|612-NZ - ¢NZ> s for both the one-particle operators
(ie. the kinetic energy operators T(r)) and the two-particle operators

(ie. the internucleon potentials V(r,r')) that occur in H.

The simplest matrix element is the 'zero-particle' overlap

integral 1-K, = <¢NZ ICLZ-NZ . ¢NZ>’ as appears, for example, in

pzpezy) = <Pyg oy wp(Epim,) P>
= <Pzl Qg - P> %

This defines the two-particle operator K, for the Feshbach theory, a

2
generalisation of the one-particle K operator of section 3.1.

Using the definition of CE-NZ given above, explicit calculation

of Ué(gp,gn) yields

UQCEp’En) = uz(EPth) - fKnCEnvEQ) Uy \Z azé) dr;
* IKp(;'p’%) uz(s,i,,zn) dZ—'_I',

+ IfKnp(En,z‘.p: Ir'x’!-i)) ‘12(21'):2.;1) d_ll;l d.’.-'.{, s

where
Kn & Kp are the one-particle density operators for neutrons &

protons (resp.) in the core state ¢NZ : see section 2.1,
and Knp is the two particle density operator for neutrons & protons

jointlye.

If the neutron and proton motions in the core are uncorrelated,

then Knp factorises simply, giving

= t
Knp('l;n’rfp; _EA;E_I')) = Kn(_l_'_n’_llz;) Kp(;_'.pvzp)v

so U, = (1 = Kn) (1 - Kp) u,
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That is, 1«%, = (1= Kn) (1 - Kp), where both sides operate on

2
arbitary 2~particle states of the form uz(gy,gn) .

The next simplest matrix element is the explicitly Hermitian

form <A, ¢A | QL. ¢A> , as appears for example in the expression

Py|? = <Py | P>
Qu, ;] A u, 4>
= <u, <Q.¢A|a_.¢A> lu,>

Detailed calciulations show that this form is equal to the first one::

<Qpyz * Pz | Qoyp = B> = 1K, = (1-Kn)(1-Kp) 7

When we consider a one-particle operator, the two kinds of

matrix elements of Tp(gp), say, are first

By | T,,) | Ly » By = T, (@,) (1-K,) .

Unfortunately this result is not Hermitian, as in general (1--K2)Tp #
Tp(1-K2) because Tp & Kp do not necessarily commute, It would be
better if the matrix element-were clearly Hermitian, as then probab—
flities and fluxes are explicitly conserved. To this end, I prefer
using the second form of matrix element<412_nz . ¢NZ ITpVQZ-NZ - ¢NZ >
which, although more complicated algebraically, is always Hermitian

whether or not Kp & 'I'p commute.

This Hermitian matrix element of Tp(gp) becomes after detailed

calculation (and after assuming Knp = KnKp again)

<Qyyg « Byz | 7o) | Appy « Pz >
1

- - - - 7r (T K 1-K
241 [TP KpTp = Tpfp * Tr (T Kp) 2(Tp pp)] (1-K,)



62
.
where Tr(T K T (v E (r ,x dr
(p p) "f p("p) p("'p"'p) "'p'
the kinetic energy of protons in the core,

- . v
Tr, (T K ) = ITp(sp) Kop(ZoEys ) ar »

and Kpp is the two-proton density matrix :

xpp(£1 WIs Z1,xy) = 2(2-1) <¢NZ("’-I:':1N’£1' ._1;5..)|¢NZ(.._r_nN,;_1 sTpee) >

integrating over r sl and all the r i=1 .. N.
8T g —p3 ’ —pZ -ni )

The matrix element may be simplified again if the proton motions
in the core have no correlations beyond those required by the Pauli

Principle, as then Kpp factorises in an antisymmetric fashion:
] 1 - 1 1y o v ]
Kop@Eq9Zp5 21523) = K (z9xi) X (zpez)) - K, (z90z3) X, (zpez])e

The matrix element of T (x becomes
&)

. ¢
77 |7, - TK =KT + Tr(T K ) - K Tr(T K KTK | (1-K
241 { P PP PP (T p) P =(% p) M - p] (1-kp)

- o [(1-KP)TP(1-KP) + (k) (- )| (1K) .

The above assumption of independent motion in the core is equi-
valent to assuming that ¢NZ is a product of proton & neutron Slater-—
determinant states, i.e. that Kn & Kp and hence K2 are projection
operators., If Kp is a projection operator (1-Kp) = (1-Kp)%, s0

under the same assumption the matrix element becomes
1 % 3 |
1=K T 1= Tr(T_K 1=K 1=K
Z+1[( p) lp(Kp) * (pp)( p)]( n)

"iiT (1-1(2)5[1'p + 'rz.-('rpxp)] (1-K2)‘5 .

The advantage of this (1-K)% reformulation is that although it is
exact for Kp a projection operator, it is also consistent with the
original matrix-element expression in the limit '1‘p a scalar : both

this reformulation and‘<O%-NZ'¢NZ| Tp] a?—NZ'¢NZ> become equal to

just t(1-K2)iJ1the limit Tp = t, for t any scalar, This result holds
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<

for any Kp, and is independent of whether or not Kp & Tp commute,’

A consistent approximation for<112_NZ.¢NZ | Tn(gn) lCl?-NZ’¢NZ>

would by analogy be

-}31—1- | (1‘»—K2)% (Tn(;n) 4 Tr(TnKn)] (1-K2)% g

Similar (1-K)% approximations are available for two-particle

operators such as Vpp(gp,;é), Vnncgn,gé), and Vnp(gn,gp) = Vpn(gp,;n).

The matrix element of vpp is, for example, after considerable algebra

<oy yg » By | Vop@pozt) | Dpyy « P>

*“5(%7)' {(1-KP) v, (») (1-Kp) + Tr.lz(vppxpp) (1-Kp)-] (1-K_)
where Va(p) = Tr(Vpp(zp,)Kp) - (vpp'Kp)

the antisymmetrised proton-to-core potential,
Tr(V XK)= |V r') K tyet) det
(Vpp (g2 %) J ppEprzp) Kp(pzy) dzy
the direct part of the proton-core potential (local),
(Vpp.Kp)u = JV (z_sr') K (x_,z') u(x') dz’

PP TP P PP TP P -P
the non-local exchange part of the potential,

d Tr, (VK = v ') K__(x 4x's 2 or!') dxr dx'
and  Trqp (Vppkop) ” ppZprZp) Kpp(EpeZps 2pozy) dx, axy

the attraction between two protons both in the core,
By assuming (1-Kp) = (1-KP)% as explained earlier, this becomes
'Z'(%-ET (1-K2)% [Va(p) 4 Tr12(Vpprp)] (1-K2)% -
A derivation along these lines of the matrix element of Vpn gives

1 v\
ey (%) [vpn + T (VoK) 4 Tr (V)

. 3
+ Trnp(xpvpnxn)] (1-K2) .



64

Using these (1-K2)% matrix elements for T(r) and V(zr,r'), the
total Hamiltonian H of section 2.2 has the fully antisymmetrised and

explicitly Hermitian matrix element

<Opyg » Pz 1Bl Aoy « Byp >

3
= (-5)% |7 ) + V. (0) + T,(z) +V,(n) + V (,z)
| s e, ] (1-x,)%,
vhere Va(p) & Va(n) are the antisymmetrised single-particle potentials
| from the core to the proton & neutron respectivley,
and e, is the constant energy internal to the core, HA¢NZ = eA¢NZ’

A

V. K )

’ 12( nn nn

A = Trp(TPKp) + Trn(TnKn) + Tr

+ Tr12(vppxpp)-+ Tr12(KPVPnKn) .

This form should be familar, as when antisymmetriszation is not
taken into account the only changes are the (1-K2)% factors being

wnity and Va(p) & Va(n) being entirely local potentials.

The effects of antisymmetrisation, according to the more complete
analysis presented here, ére therefore of two kindse. First, ﬁhey
result in the individual nucleon-to-core potentials having non-local
components. The existence of the non-local exchange terms has long
been known, but it is found that local equivalent potentials (see
section 2.6) often exist which accurately reproduce the same cross-—
sections. The 'kinematic assumption' of section 3.2 assumes local
approximations Vp &V to Va(p) & Va(n) respectively, so the only efffect
of antisyrmmetrisation is of the second 'kinematic* kind: the existepce

of the (1-K2)% factors.
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&3 Wave Eovations for two particles outside the core

In the previous section, it was shown that the total Hamiltonian
for the neutron-plus-proton-plus-core system has a fully-antisymmetrised

and explicitly Hermitian matrix element of the form
% 3
where H, = T4+V  + T 4V 4+ V + e
P n n n n

2 y) A?

Vp & V_ are the full Va(p) & Va(n) or some other equivalent,

1=K, = (1-Kp)(1-Kn), -
and the whole expression operates on 2-particle joint wave

functions of the form u,(x_,r ).
2 s

The operator 1-Ké may now be divided into two parts

- = - = v
1-K, (1 P2) (1 K2)
vhere P2 is the projection operator onte those vectors that 1-K2
blocks fully,
and K3 is the remaining part of K, : K =K, = P,
That is, exact in analogy with the single-particle case of section 3.1,

if in an eigenvalue expansion

5 = ; |wi> A <wi|, with {wi} an orthonormal set,

n
I

fi lwi>< wil and Ké = % |w1> >‘i<w:ll ’
)‘i=1 l1¥1

= 1 P
80 K2 = P2 B K2 and P2Ké = 0. The P2

2.P2 = P2 and P2% = P2. The square-root operatior (1-K2)% is defined

;_ ¥
by (1~K2)‘ = 3 |wi>(1-ki)%<wi|. If the neutron and proton motions in
i

is a projection operator, so

P

the core are independent, then 1-P, factorises to (1-Pn)(1-Pp) where

both P and Pp are projection operators with P, = P+ Pp - Pan'
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Schrodinger's equation for the deuteron-plus-core system at energy

- 'E* is _
{H - B] o pz vp(Epozy) Byp> =0 -
Thus
<a2-I§Z ° ¢NZ |2~ B | az-nz . ¢N2> “2(%'%) = 0
” (1-K2)% [Hz -E ] (1-K2)% u(z.z) = 0,
or

(1-K5)%(1-1>2) E, = E (1-P2)(1-K2')% u, = 0.

Proceeding as in the single-pzrticle case of section 3.1, we
absorb Ké (the partially-blocking part of K2) into a wave function
redefinition, and leave the totally-blocking part P2 to put

orthogonality conditions into the channel equations

(1-P,) [Hz _—E] (1-p,) Qz(g_p,_r_n) = O,

where

def 2y %
Q, is defined by g, = (1-k2) Uy

2
and the division by (1-Ké)% is always possible as K} has no

unit eigenvalues, by construction.

The P2 is a projection operator, so the above equation projects
92 onto the not-totally-forbidden subspace P2ﬁ%=0 before applying the
channel Eazmiltonian. EHowever, an equation of the form
(1-P)[H-E](1-P)f = 0 does not (yet) remove the forbidden components
from the wave function : the above equation does not imply Pf=0, it
only nullifies the effect of such components for the Hamiltonian,
It is'possible nevertheless, to construct another, related, equation
for f' =(1-P)f which has all the forbidden components specifically

removed : [H -~ E - PH ] f*' = 0 implies Pf'=0 for E#0.

Applying this construction to the equation for 92, we get

[H2 - E - P2.H2]92(£p,_r_n) = 0.
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From this equation, by premultiplying by P2, and by assuming E is
not exactly zero, we can easily prove P292=0. And then, if P2 =

Pn + Pp - Pan, Pnﬂz = Pp92 = 0 can be proved too.

Expanding H, = Hp(zp) + angn) + Vnpcgpfgn) + e,, we can get
[Bp-l»Hn-anp-reA-E]Qz - P2%p+ﬁn+vnp] 92 = 0,

which leads to P292=0 provided E ¥ e, The first term is that
usually taken to describe deuteron interactions with a2 core nucleusj
the second term is a specific effect of ﬁntisymmetrisation. It is
an additional effective potential (often called . the 'Saito Potential')
that forces the orthogonality of any solution Qb to the fully-blocked

o 2 Ppliy=0.

vectors |wl> ( M§1) that constitute P, : P.Q
In numerically solving the system of coupled differential equations

like that above, one would more readily use the direct orthogonalising

technique descfibed in section 2,5 than use the full Saito potential

in the form aﬂove. But knowing that form can be useful, as in the

next section, for example, it will be simplified considerably in the

case of elastic scattering only, and then the resulting expression

will ‘be found to be more useful as a perturbing potential than as one

that forces orthogonality conditions.
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4.4 Elastic Deuteron Scatiering

The previous section derived an equation for the general motion
of & neutron and a proton outside a core nucleus, including anti-
symmetrisation with the core nucleons, In this section, a channel
equation is derived for the relative motion of the deuteron to the
core when they interact only elastically. If R is the coordinate
distance between their centres of mass, then we will be considering
components ¢d(£) ud(g) of the general joint wave function 92(£§’£n)'

where u,(R) is the cluster-to-cluster relative wave function.

To derive a channel equation in R that is sufficient to determine

ndcg), we project the equation of (!, onto the deuteron's internal state:

2
[az 8,0 (1-2,) (5, = 81 (1-7) 0, = o,

where, as explained in sections 2.2 and 4.3, the orthogonality

condition P,0,=0 may be used to remove any supererogatory components

22
in,. With elastic scattering only, 2, = ¢d u;, 80
<$,1(1-p,) B,-E1 (1=P,)[ B, > u;(R) = O .

~There are at least three ways of treating this sort of channel

equations

(1) One vay is to expand it in full, using 1-P, (1-Pn)(1-Pp) and

the eigenvalue expansions Pn =Z; |¢ni><¢ni[ & Pp =2z |¢pj><¢pj| for
the neutron & proton projection operators respectively. This is done

in section 6.2, and will be seen there to lead to a great many terms

in a complicated final result.
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(2) A second method is to approximate
<¢a| (1-P2) [H2-E](1-P2) [¢d>

A 3
by f;|1-P, |f;>° (B (R) + ey + e, = E]<¢dl1'PJ g, + H_
and then by

Bl 1-P, |¢a>% [Hg(R) + Vo + €q + €, = E19, |1_P2l¢d>% .

This "square-root approximation" will be examined in more detail
in éectibns 5¢5 & 6.1 in the context of orthogonalisation to specific
neutron states. It has the advantage that many of the orthogonalis-—

ing effecte can be absorbed by redefining the wave function udQ&).

(3) A third method is that of Pong & Austern(1975), and is now
investigated in more detail. It uses the orthogonality condition

- = 3 < g i =P > o
P,%=0 (ie. P,$,u:=0) to simplify <@, |(1-P,) [B,-E }(1-P,)l g7 uy = o.
They get therefore

- - > & |

S AI¢ P2)[Hp+Hn+Vnp+§A E] 183> v, (R) 0

They next assume that Hp & Hn commute with P2, ie. that the scattering

and core nucléons move in the same collective potential, This is

not unreasonable, as explained in section 4.1, so
< i - =
¢d|[Hp +H o+ (1 P2)Vnp +e, = Flp v 0,

fes [T, + W, -<¢d|P2Vnp| B,> = By wy@® = 0,
where wd(g) is the deuteron folded potential - see section 2.1,

and Ed=E-eA~-ed is the deuteron incident energy in the cm, frame.

The effect of antisymmetrisation is the positive  correction

~<¢dl Vo |¢d> to the deuteron's folded potential W;. As it
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¥
<

stands, -<¢d|P2Vnp

some effort Pong & Austern find a local approximation for it (by

|@. >is non-lccal and not Hermitian, but after
d 4

a method outlined in my section 2.6), so that it may be very
conveniently added to the folded potential as a second-order
correction to the shape of the potential well,

They find that the local equivalent to the correction term
reduces by about 10 Mev the depth of the potential well for d = 160
scattering around 5 to 20 Mev incident energy, and has a radial
dependence very similar to that of the nuclear density. This
sort of correction to the folded potential is approximately that
shown to be necessary by Perey & Satchler(1967), who calculate for
each of a wide range of nuclei the folded potentials wd, and compare
these with the optical potentizls obtained directly from the observed
deuteron - nucleus elastic scattering data. They consistently find -
for the optical potential two well depths at 78t2 & 11012 Fev that
equally well match the experimental data : the two wells differ by
an integer in the number N (cf. section 4.1) of oscillations of the
deuteron wave function in the inner region. Unfortunately for the
folding model, the calculated folded potentials wa fall almost midway
between these two sets of optimum depths, so the folding model theory
cannot decide between them, From their data, FPerey & Satchler "may
be able to deduce the magnitude of the higher-order corrections
( =20 Mev) to the model, but not their sign." With the result of
Pong & Austern that the second-order corrections they calculated are
repulsive about 10 Mev, they have clearly accounted for part of the

discrepancy, and point towards the shallower optical well as being

more realistice
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This.general agreement with experiment of Pong & Austern's
second-order correction is very encouraging, but the troudble is that
two of their assumptions are mutually inconsistent! They assumed
that the orthogonality condition P292=0 could still be held in the
restricted model space 92 = ¢d Uy but this in fact is not true:

P2 ¢d u, = 0 implies that Uy is zero everywhere except asymptotically!

And their master equation for u, certainly does not imply that the

d
orthogonality condition is fulfilled, as we checked for the channel

equations derived in the previous section. The only term additional
to the usual local Hamiltonian is at most 5 to 10 Mev, and in retro-
spect we see that this additional potential is only an approximation

to even the equation derived in section 4.3, even though its derivation

looked reasonadbly rigorous.

To discover exactly how gocd this approximation is, we need a
model space for 92 in which the condition Pé?z = 0 can hold. We will
find we need to include at least transfer channels in the model space,
but this brings up the problem of the non—orthogonaiity between
deuteron and-transfer channels, and in the next two chapters it will
be seen how the twin problems of nonorthogonalities and antisymmetris-—

ation are very much interrelated, and need to be treated simul taneously.

There are very definite physical reasons, which may be given in
the meantime, why the magnitudes of these twin effects are of about
the same magnitude, and add together. For transfer reactions involve
a scattering nucleon going into an unoccupied bound state around the
core, whereas the Fauli Primciple is the opposite ¢ it requires that
any scattering nucleon not overlap any bound state around the core if

that state is already occupied. Chapter 5 shows how to deal with
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the nonorthogonality of transfer channels : by orthogonalising the
deuteron wave function to all the unoccupied bound states. We deal -
with antisymmetrisation requirements by orthogonalising the deuteron
wave fundtion to all the occupied bound states, Although the
physical processes are opposite, because they are exactly opposite,
the approximate magnitudes of the twin effects will depeﬁd‘on'laxgely
the same principles, and on largely the same features of particular
reactions. It is therefore desireable that they be included in

models and analyses together.

If we now go back to Pong & Austern's method, we can consider how
their model space 5% = ¢d u, must be extended if the orthogonmality

condition P292=O is to ever hold. Take for convenience the simplest

case of a core nucleus of just one neutron, in a state ¢n(£n). The

o is then just |¢n><¢n| » and the condition P,Q2, = 0

becomes <¢n| Qz,z 0. In the light of the physical arguments above,

Pauli operator P

we may alternatively view this Pauli Principle requirement as the
'blocking® of a possible neutron transfer to the state ¢n' So let

us include in the model a mathematical description of such a transfer =

‘é(s.pizn) - ¢d(£) ud(g) % ¢n(£n) up(l_'p)

for some variable wave function up(gp). The Pauli requirement is now

0 = <¢n|§22 = <¢n|¢d>ud+np,
where, as explained in chapter 5 in detail, the nomorthogonality
problem is that the overlap <¢J ¢d> # 0. The condition
u, = -‘<¢n|¢d> u,; may quite reasonably hold, with both u, and u, non-

gzero in the internal and reaction regions.



73

Pong & Austern's model took the blocking of a neutron transfer

40 §_ to mean that u_ = 0 everywhere, but this cannot be true as then,
n P

because<;¢n|¢d> # 0 at least internally, it would mean that u; would
be zero there. We must therefore omit not the wave function 'up?, but

some other wave function, to model the blocking of neutron transfers

to a state such as ¢n'

In Chapter 5, we will see that as well as a up which multiplies
¢n in the expression for 92, there is another proton wave function

Up(gp) vhich is the projection of 2, onto ¢n : Up = <¢n|S22 e The
wave functions up & Up are identiczl asymptotically, and coupled
channels systems can be writtén down that use exclusively up or Up'
With fhe model above, a channel equation in Up is to be prefered

over one in up, because up can be non-zero even when the transfer to
¢n is blocked, whereas Up = 0 is precisely the Fauli condition

P292 = 0, as ¢nUp = |¢ﬁx:¢n[ Q, « Therefore to model the effect of
antisymmeirisation on deuteron motions, one choice is to first set
up a set of equations in ud(g) & Up(gp), and then to model the block—
ing by core nucieon(s) put Up = 0 everywhere, In this way the Pauli

condition P292 = 0 can be fulfilled exactly in the model.

The fact that the Pauli condition is not the 'multiplicative' up,
but the 'projected! Up being zero, means that the derivation in treat-
ment (3) of the second-order correction -<¢d|P2Vnp|¢d> is only
approximate. An assessment of its accuracy must now wait until
Chapters 5 & 6, when the twin problems of antisymmetrisation and of
nonorthogonalities between transfer channels are treated together in

a unified manner,
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Chapter 5 Effects of Channel Non-orthogonalities in Transfer Reactions

5.1 _Defining the channel amplitudes

In calculating transition rates for transfer reactions, problems
arise because the natural coordinates of the elastic and rearranged
channels are not the same. In deuteron stripping, for example, the
natural coordinates for the deuteron channels are the proton - neutron
c.m. and relative coordinates, R and r respectively, whereas for the
outgoing proton channels it is most natural to use the separate coord-
inates r and I for the distances of the proton to the residual nucleus,
and of the neutron to the target nuecleus, respectively. In these 'natural
coordinates' for each channel, the projectile = nucleus relative wave-
fields appear simply as functions of the one coordinate (g or Zp)' and
the 'internal wavefields' - the deuteron internal state §,(z) or the

remaining neutron's state ¢n(_r_n) - appear as functiors solely of the other

coordinate r or r .
e -n

To find a Schr¥diinger equation for any of the projectile = nucleus
relative wave functions, one has to calculate everlaps of the various
internal states, overlaps of the form <¢d(£)| ¢n(£n)> s and in many
calculations to date, these are usually assumed to be negligible for
distinct internal states ¢d & ¢n. For transfer reactions, however, this
overlap is not at all always zero. In fact, because of the way the
coordinates (R,r) relate to (Eb’sn)' it is not even just a number, but
an integral operator. In the case of a massive core I, = R - ig and
55 =R + #r , so the above overlap is the operator form de =

fqa ¢d(£)* ¢n(5:£/2) + This operates on functions of Ep €eZe up(gp),
and gives the function of R J,¢d(£)* ¢, (B=3r) up(gfig) dr
= Jde(E’Ep); u, (=) oz,

K u .
¥ Tap oy
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Although the internal wavefields ¢d and ¢n may not be orthogonal
when de (or its transpose Kpd) is not zero, in general they will not
be linearly dependent either. That is, they are not collinear, so any
state-vector has a unique expansion in terms of them, and it is possible
to use a model subspace of the total three-body wavefunction Y of the
form PV = ud(g) ¢d(g) + upcgp) ¢ncgn) for variable channel (1)
wavefunctions u & up. (As yet we consider only one deuteron and one

stripping channel, and treat the target nucleus as a massive inert core.)

This expansion of PY in terms of a basis set of the twonormalised
atates|¢d>&|¢n},with variable channel functions u; and U ig formally
analogous to the expansion of an arbitary two-dimensional vector P Y
in terms of a basis set of two unit wectors Qd &*Qn’ with variable
coefficients u, & U The non-orthogonality of l¢d,>&| ¢n> is analogous

to the vectors ﬁd & ﬁn not being mutually perpendicular in the plane.

————m — = = - — Py
P /
/
/
unit directions //ud
g, /
4o, ’
) \/
Qn u 4
P
Vectorially, PY = U Qn + uy ﬁd
and cos 6= f_ . @, .
From the definition de = ‘<¢d| ¢n -
the analogy is de ~ cos B - Kpd'

Although Qd andﬂn may be non-orthogonal (8 # 90°), in general they
are not collinear either (6 # 0°). Thus although the basis is non-orth-

ogonal, there are still unique coefficients vy & u,p in the expansion

of PV,
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There is a second method of defining channel amplitudes in R or ;p

that can be used e.g. by Cox(1965), Ddhnert(1971) & Brieva(1976). This
is to project the total model wavefunction PY onto the various internal
states ¢d or ¢n, and to denote the resulting wavefunctions by u&(g) &
U?(;p) respectively. Using the previoug expansion (1) for PY as a sum of
products of the Uy & u_ wavefunctions (which I call henceforth
"multiplicative” functions because they multiply their respective basis

vectors), we can express the "projected" Ud & Up in terms of them:

L@ = B @) [ @) fE) + () B>

fe. U, = u, + de " (2a)

and similarly
Ty = <Ayl Y
= w(z) + <f (=)l 8, >, ®)

ie. U = + K

P P pd ¢

udo

The non-orthogonality problem arises when the overlap operators de &

K_. are non-zero, and hence the multiplicative and the projected wave-

pd

functions ere distinct.

The analogy with planar vectors continues with the projected

wavefunctions Ud & Up: they are simply the projection of the total vector

P Y in the directions Qd & g respectively.
U

=
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Vectorially Up = up + u, cos ] cf. Up = u 4+ Kpd d

& Uﬁ = nd ES up cos 0 cf. Ud = u + deup °

Note that PVY # Up¢n + Uﬁ¢d’ s0 a new basis is required if
the amplitudes Up & Ud are to be multiplicative expansion coefficients.
This new basis may be found first by inverting the above equations, to

find the u's in terms of the U's:

w o= (1- xd )."1 (d -xdpup),  (38)

and then subetituting these expressions in Py = nd¢d + up¢n :

PY = (¢ ¢ Kpd) (1 dp pd)-1 d

(B, = B4Kgp) (1= kK )7 UL (4)

How for convenience I define the Hermitian operators Kd = deKpd and

K =K K. . Thus the new basis expansion is

P pd dp
PY =B, U, + B Up " (5a)
defining the new basis 'vectors' Bd & Bn (they are really operators)
-1
By = (¢d - ¢nKpd) (1 - Kd) ’ ' (5v)
. -1
& By o= (B, - Bk (W -K)7. (5¢)

‘Note that the Bd and Bn are neither orthogonal
‘ -1 =1
<B |B;>= -(1-K) Koa = ~Kpa(1=K3)™ £ 0 (6a)
nor normaliséd

IBI° = <y 133> = (k)" £ 1 & [BIP = (1-k)7" £ 1. (6b)

In fact, though, B, is orthogonal to ¢n and B to ¢d’ since B,

for example, may be rewritten (1 - |¢n><¢n|)|¢i’ (1-Kd)-1 and thus

starts with a projection operator to the subspace orthogonal to ﬂn.
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That is, gd & gn define new directions in the plane, perpendicular to

Qn &'Qd respectively:
B I, 4 1,
gd but with de~ cos e“'Kpd’

- . -
”Bd” = (1= deKpd) ~ (8in 6) " > 1.

Hence §n & Ed are longer than the wunit

0 1 ‘
'}Qn vectors ﬁn & ﬂd by a factor of cosec 6.
I

If we want an orthogonal basis, we should therefore not ﬁae Bd &
Bn together (as DShnert & others have tried), but use a mixed pair of
vectors that are orthogonal e.g. ¢d & B , or else the pair ¢n & By
together. We choose the second basis set to investigate in more detail.

It may be made orthonormal by defining %d as a unit vector in the

direction of Bd s
By = By / Byl = (B, - 8K ) (1-K“f
= (1-72) 8, (1-%,) | (7)
where P = ]¢n><¢n[ is a projection operator.

A third vector in the same direction may also be defined (it is the

simplest, but is not normalised) : (1 - Pn) ¢d -

These three deuteron basis vectors, (along with ¢n’ to which they

are all orthogonal) lead to three orthogonal expansions for PV :

1o By (1Eg)uy(R) + V() (8)
2. B, q,(®) + B0 (z) (9)
3. (1-Pn)¢d uw,(R) + B Up(rp) (10)

where Qd(R) = (1-Kd)é ud(R),is a new deuteron channel
' wave function,

= < Ed | pY - (9v)
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These expansions have the geometric representation

9) ey pY

- g T
_.Qd sin G%ud 6}/ ,7!
=K. /|
= {1 Kd) uy ’ﬁd &1
' . / / |

= ||B,[[(1-K.) u. 5]

Ma a’ "d BA 7\% ,/ :
Ne Ie I
A N
1)

The decision on which of the three basis sets té use will have
to depend on whether the advantages of a normalised basis outweigh
the complications of the (1-K)d%factore, and on whether the advantages
of a simple form maintain when there is no normalisation, It turns out
however, as will be seen in section 5.5, that there is a specific
(1-K)% approximation for the deuteron-channel Hamiltonian, so there
can be a cancellation (1-K)% (1-K)-% = 1, and the resulting channel
operator can be remarkably simple., (Note how already we have methods
analogous to those used in the antisymmetrisation problem, with
(1-K)i factors appearing both in the basis and in the effective
Hamiltonian. This similarity will be exploited in the next chapter

- to unify the treatment of the two problems.)

The third expansion of the model wavefunction has a simple
physical explanation., Because in the internal region ¢n and ¢d are
not orthogonal, there is some component of ¢dud in the ¢n direction:
< ¢n|¢d3’ud " ¢n' The redefinition above takes this component away
from the deuteron form ¢dud' and adds it to the proton form ¢nup.
Thus the deuteron part becomes (1 = |¢n><¢n|) s u;s which is ¢dud
orthogonalised to the ¢n—direction. That is, all parts\of the deuteron-

core wave function are removed which look like a proton against a
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neutron bound in a ¢n state. Conversely, the proton-channel wave-
function is 'increased' from up to Up’ 80 now ¢nUp includes any part
of the total state that looks like a proton + ¢n-bound-neutron s

U, = <'¢n|P‘¥>.

To end this section, I wish to discuss what haprens when the
various operator reciprocals have zero denominators. Such expressions
occur in both the monorthogonality end antisymmetrisation problems: in
both we are given formulae for the 'projected’ amplitudes 'U' in terms
of the 'multiplicative' amplitudes 'u', and often have to invert them.,
The question is now over the physical significance of the denominators
of (1-Kd)-1, (1-Kp)-1, and (‘I--K).1 being zero - the case of K., Kp & K

having unit eigenvalues,

Feshbach(1968) showed in the antisymmetrisation problem that this
corresponds to the possible existence of spurious components of the
amplitudes 'u', which, with U = (1-K)u, can occur even though 'U' is
always well defined. These spurious components are Jjust all those
removed from the relative wavefunction by Pauli Principle blocking by
the core nucleons. By simply stipulating the the 'u' state is to have
no overlap with any spurious components(which are the eigenvectors of
K with unit eigenvalues), Feshbach was able to carry out the inversion
u= (1-K)-1U and define 'u' uniquely. This is mathematically achieved
by factoring (1-K) = (1-K*) (1-P), where 'P' has all the unit eigenvalue

and K' the non-unit eigenvalue parts of K. Any reciprocal forms (1-K)‘n
are then replaced by (1-K')™™, and the orthogonality condition PU = O

generated.

In the non-orthogonality problem, a unit eigenvalue of Kd = deKpd

or Kp = Kpdxdp has a related meaning. The mathematical details are

summarised in Dohnert(1971): the result is that in this case the internal
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states ¢n & ¢d would be linearly dependent. That is, there would be

1 1 1 1
non-zero channel amplitudes vy & Lp such that ¢dud + ¢nup = 0., These
amplitudes could be added in arbitary amounts to uy & up in PY¥= ¢dud
+ ¢nup without affecting the system state pY , so there would be no
unique expansion into distinct deuteron & proton channels, as one channel

is a linear combination of the others.

The solution is again to stipulate that that channel have no
amount of the spurious component u;. With such an orthogonality condition,

,<u;|Ud> = 0, the channel expansion becomes well-defined,
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562 Calculation of the Overlap Operators de and KPd

An overlap operator such as de is defined in the model space
PY= ud(R) ¢d(r) + up(rp) ¢n(rn) as that operator which, when acting

on an arbitary function of r such as up(rp), produces

Kaply = <Ba()[8,(x)> w (x)

dp p
" _
= [#.®)" 8, (ed) w(Redr) L,
2 function of 'R' the deuteron channel variable. It would be more
convenient if the variable of integration were changed to rp, so that

deup = dep(n,rp) up(rp) g;_p

for some function de(R,rp) called the kernel of the integral operator
de. We therefore change the independent variables from the pair

(Ryxr) to the pair (R,rp). Let J

ap be the Jacobean of this transforme

ation, so
*
de(erp) - Jdp ¢d( r(R-rp) ) ¢n( rn(Rorp) )
*
and Kpd(rp,ﬂ) = de ¢n(rn) ¢d(r) similarly.
The Jacobeans are both 8 for deuteron stripping on heavy nuclei,

and (13/7)_3 = 6.41 on carbon-12. Because the Jacobeans are equal,

de(R,rp) = xpd(rp,n), 80 de & Kpd are simply Hermitian trénspoaes.
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A much more general model subspace for Pi‘y is now adopted: the
model described in detail in section 2.1. The overlap kernel function
beiween the deuteron channel (I‘asa)JaI and the proton channel
(I’bsb)JbJB , with the total angular momentum *J" in both channels, is

K(gs)JI- (Ios, )dig, ®eFp) = B o ]
a“a’/Ya* * \Pp°b/YbVB P M, @y

M, By Mp

4)

- = aRy pWarqy® 1 b
Jdg jd_z_' frzdr”dg1..d;A jdﬁ 17La Y;fa(g) w’;’a(g) o $y(=)
Wz,.oz,) - OB CRERERELE AR %,,

clasala Ja IJ C}I;[bsbe oJb  JIBd

MmM +m
a a a a Ma+ma M bmbe+mb Mb+mbMBM

We now change the variable of integration from x to g_p y where

£=pg+q_gp and _1_'n=a§_+b£p

2 MB HA+1 2 M
with constants a = MB'” s Db =-ﬁ:_-.3 s P "FI:}-E s and q = a
for deuteron reactions on a target of mass MA leaving a residuval nucleus

3

are equale.

= a2 -
of mass MB MA + 1. The Jacobeans Jdp-q and de a

The calculations are now closely analogous to those for the usual
transfer coupling Vdp = < ¢d¢A |an(g)| ¢B >, but we no longer have
the very convenient zero-range approximation, whereby r = O and the
three vectors R, r, & £ are all collinear. Instead, Rlsj(rn)’ the

neutron's radial wavefunction, is dependent on the angular variables

_ﬁ__y& _;;p,:
r -(p2R2+q2r2+2qur cos 0 )J" |
P P \
and T, = (a.2R2 + bz::p2 + 2ab R x, cos C] )é
R.x
vhere 0 is the angle between R & r_ : cos 0= R.p = =t ,
= %p ="=p BERr
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' ~
First Y? (gn) is expanded in terms of the spherical harmonics

of R and r s UBing r = aR + br :
= =p n - =

ey - 4 (2n+1)é (21+1)§ (ar)!~® (brgz_; cl-nn1

m'=\AAm'

n=o A::-n ¥ 1
n

- ME® RE)

x3

x
h v = ™
where (y) T CE

(see Ohmura et al.(1970) eqn 3.8a, or Austern et al.(1964) eqn 26.)

Sedond, rn-l Rlsj(rn) ¢d(r) is expanded in terms of the Legendre

polynomials P, (u), where u = cos6, so rns(a R2+b2r§+2abﬂrp u)% and

T = (p232+q2r§+2qurp u)%.

mus =, Ry () B(x) = zL' L ok @,r) By(w)
L +1 9 .
where qu(R,rp) = - Rlsj(rn) ¢d(r) . PL(u) du

-1 rn

are the R & rp - dependent expansion coefficients,

_ 4 . Vo Ry * Ve
We then use PL(u) = 2743 g 1, (R) Ii(gp)

n

-1 _ L VRY * vV
so xRy g ()8, (x) = 2] ayRer) RE*RE),
and we can then proceed with the integrals over ﬁ,and ép'

After considerable Racah algebra, though in part this is similar

to that for Vdp' the following result for de is obtained :

K(i 8 )J I : (Lbsb)J Iy (Ror ) = 7§ *3133 Pt be 35 (s, 3p0,)

aa’''a 1)

L. s, J . ‘

e 3| x b E R aEe) @ (o)

L s, J

' x (PLHR(Lalnly (Lyily § 35 (2141) (=1)1 "L, W(1nL L; 1-n L,)
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This should be compared with the expression for the zero-range

coupling vdp in the same models

J (ap)
v (R)
(Lasa)JaI : (Lbsb)JbJB
L. 8, J
b "bv b
JIJg ,L.4l=L_ ~
- ‘123 Agy® LTTCa Iy 3 W(IiIa; Jgd) |1 s
La aa ‘Ta

1% L
1 L. -1 a™ /AL I
x D -=-La (=1)"v -T(M) (o o8 ob) RIBJ(R)

Note how.the first lines of the two expressions are the same, This

means that if, for reasons of small coefficients of fractional parent-

J1g
Alsj

kinds, it should result that V
dp dp

reduced. There are other cases too, in which vdp and de

or zero for the same reasons. The zero-range coupling Vdp is zero for

'unnatural' parity stripping processes (La + 1 + Lb odd), because of

age B or of unfavourable angular momentum coupling of certain

is small, then K, will be gsimilarly

can be small

the Wigner 3-j coefficient (i ga ﬁb). For such processes, it can be
shown either La+1-n+L or Lb+n+L must be odd, so, for these 'unnatural

parity' reactions, K. is also zero.

dp



563 Systems of Schrodinger equations for transfer reactions

The Schrodinger equation for the whole system, for total energy
‘E'y, is [H-E]P Y =0 ., We now form deuteron and proton channel
equations by pre-operating by < ¢d¢A| and by <¢B| s respectively, in
the framework of a 3-particle neutron+proton+core model defined by the
expansion Py = ud(R) ¢d¢A + np(rp) ¢B (where ¢B(rn,r1..rA) is

a linear combination of ¢ﬁ(rn)¢A(r1..rA) Yo

The total Hamiltonian 'H' may be written in two forms, Hi & Hf,
called the 'prior' and 'post' forms, which most naturally suit the
deuteron and proton channels respectively. The details of Hi & Hf are
given in section 2.2, but here we have a choice as to which to use in

the two places :in each..of the two equations

<P 8, lB-E[g P>, +<8,8, |E-E|gy u, = 0

end < By |H-EI¢B>up + <Pl B-E|gfou, = 0.

We have further choices as to whether we prefer the 'multiplicative"'
channel wavefunctions vy & up, or the 'projected' functions Ud & Up,
or some hybrid combination of basis expansions. As explained in
section 5.1, the total model wavefunction PV can be expanded in any
combination of channels, provided the combination spans the model space

and its parts are not linearly dependent.

Exercising the choices above, a variety ('A* to 'D') of coupled-
channel systems may be obtained, and it is instructive to compare their

uses.,
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(A) Using only the 'multiplicative® Uy & up, and using Bi throughout

the deuteron channel & Hf for the proton channel::

[Bd-Ed]ud(R). + [Hd—Ed]de L vdp v = 0

£
and :_[Hp - Ep] up(rp) + [Hp - Ep] xpd uy, + vpd u, = 0,

where Edau E = ed - eA & Ep = E = eB

eq? €, & ey are binding energies of the deuteron ¢d’

target nucleus ¢A' & residual nucleus ¢B states,
i
vdp =< ¢d¢A| ))i l ¢B> s and v;d ‘<¢Bl ))f l ¢d¢A> L

The second terms in the two egquations are non-orthogonality
effects, and have usually been ignored. In their above forms, however,
they are not the easiest to evaluate as Hd(R) and Hp(rp) must be applied
to complicated functions of their 'opposite' channels : np & uy respect-
ively. An improvement would be to at least have H1 operating on deuteron

channel functions, etc., as in the next scheme.

(B) Using the multiplicative Uy & up, but using Hi on all deuteron

wavefunctions, and Hr on all the proton ones.

- £
[Hd_Ed]nd(R) + de[Hp“Ep]“p + Vgp Uy = 0

i
and [Hp Ep]up(rp)‘_ + Kpd[Hd-Ed]ud + vpd u, = O.

These equations, though, still suffer from the difficulty,
shared with scheme 'A*, of involving the prior coupling potential
vg_@n’i) = VP(B.*%.!:) + Vn@-ég) - wd(R)'. This coupling is not as
convenient t . - -

enient to use as f(gp,gn) = Van5p~£n) + Vp(rp) Wp(rp)- in

that the later has a good zero-range approximation.



L ) 88

Given such schemes as above, the question now arises whether the
DWBA is the correct limit of the £u1% coupled equations as the transfer
caupling becomes small. The DWBA assumption is that u; can be calculated
independently of the other channels by solving (Hd-Ed)ud=0 3 the up
is then derived from that uy solution. From the equations above, it is
seen that assuming (Hd-Ed)ud=o is only reasonable if both the non-

orthogonality term and the ). or coupling terms are small.
T i

Ohmura et al.(1969) stated that the "present method is mot equiv-
alent to the DWBA because of the non-orthogonality term, even in the
weak coupling limit in the sense that either ')& or “L% is very weake...
The power series expansion in terms of ))f or ))i alone, therefore,
does not correspond to an iterative solution of the basic coupled

equations even in its first order expansion®™,

'This would cast doubt on the validity of the DWBA for transfer
reactions, were it not that the ')%—emall or ")%-small limits are not
the best weak coupling limits, even were they the same limit, It is
more appropriate, I argue, to leave ‘)} and 'L% fixed at their physical

values, and take the weak coupling limit as the case of small spectro-
scopic factor (i.e. small coefficient of fractional parentage AiigB ),
or of unfavourable angular-momentum couplings. As explained in section

5¢2, in such cases the expressions

de = < ¢d¢A |¢B> »
"'gp = < P8y | Vg | F>
and Vip = < ¢d¢A l 7)1| ¢3>, .

are all small, on similar grounds, Therefore, in this new defintion of
the weak coupling 1imit, the non-orthogonality and Y & ), terms are

small, and the DWBA should then be reasonably accurate.
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(C) Using the 'projected' wavefunctions U, & Up (i.e. the basis
expansion PY = B,U, + BnUp ), and using H, in the deuteron
channel & Hf in the proton channel.

This is effectively the method of Brieva(1976) & Déhnert(1971).

Start with equations ofi(A) factorised using U&:ud+deup & Upaup+K§dud=
[ Hd - Ed ]Ua + Vdp up =0
_ f
and [ Hp - Ep ]Up + Vpd uy = 0,
then substitute the expression in section 5.1 for the u's in terms of

-1
the U's  ( u; = (1-K,) (v, - deup) etc.). We get

(Hy =By 10y + Vgq Uy + T 0 = 0
& H -E ]U A v 0
[Bp = Ep 10, + Vop Up + Vpa Uy = O

where the V are new non-local potentials and couplings :

- i -1 1 -1
vdp = vdp (1 = xp) & Vig = - vdp (1-xp) Kpd,
e -1 . —

Vg = vid (1 - k) TR S A

The chosen model space had only one deuteron and one proton
channel, so finding the u, in terms of the Ui by inverting & system
of equations of the form Ui = ui -+ jzi Kij uJ (for integral operators
Kij) is a relatively easy task. With many channels u;, the inversion
is more difficult, but, Brieva observes "it is a general result that
we can eliminate the non-orthogonality terms in any coupled channels
approach if we accept some more complicated effective interaction
taking these effects into account." Dohnert states that "the correct
treatment of stripping reactions that considers explicitly the coupling
between elastic and rearranged channels, without taking into account
antisymmetry, introduces nonlocal .. potentials not only into the

potentials characterising each channel ( dd & ?ip in my scheme above),

— "
but also into the coupling potentials (Vdp Vpd here).
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(D) Using u, & Up in the hybrid expansion PV = (1-|¢n?<¢4 )¢dud + ¢nUp
(orthogonal expansion no. 3 of section 5.1), and using Hf

wherever possible (because )J% is well known),

Starting with
[ Hi,f - E] ( (1-Pn).¢d u; o+ ¢n Up ) = o0,

we get the proton channel equation if we pre-~operate by <¢J H
H -E JU(r) + V.u 0
[Ey = Ep1 U (xp) pd @ % 7
and we get the deuteron channel equation by pre-operating by<:¢d|(1-Pn) H

f
<P lO-B) [By o - B (1-2))|f >uy + Vg U = o.

The first term is expanded to give as the final deuteron equation

f vf

([8,-Eg) = Ky [ -EJE, - Kap¥pa = VapKpa ) % * v v, = o.

dp

If a non-local Hermitian operator Fdd is defined by
£
4 Fdd = de[Hp-EJ Kpd + devid - Vdp Kpd ’

the deuteron and proton equations become respectively

' £
[Hd-Ed]ud-Fddud + vdp Up = 0

f
nd H - E U v »
a [p p] P e iud = 0

This is a set of coupled channel equations with no extra
deuteron~proton coupling terms, only with extra Hermitian but nom-local
coupling potentials among the deuteron channel(s). The proton channel
equation is formally unchanged by the inclusion of non-orthogonality
effects, but has a different pbysical interpretation as it is an

equation for the 'projected! Up rather than for the usuval 'multiplicative!

upo The only effect of non-orthogonality is the addition of the Fdd
potential in the deuteron equation. That Fdd acts to cancel the channel

operator [Hd-Ed] reflects the non-normalisation of the deuteron basis

vector (1'Pn)¢d‘
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The scheme.'D' has the advantage over scheme 'C' in that the
non=local potentials can be vritfen down explicitly in matrix form,
given a matrix representation of de, and require only matrix
nultipliéations and additions: there is now no need to invert any

integral operators or solve systems of linear operator equations,

The above definition of Fdd was for a model space with only one
déuteron and one proton equation. When there are many channels of

each typé, the 'non-orthogonality potential! Fd a coupling deuteron

i3
channels i & J is in full
F = ¥ [ 4 H -E_|K
44, k dipk[ Py Pk] Pdy
+ K Vf + Vf K
dyPy Pedy  dyDy TPy

- VK ¥ K ]
E d4P; PP Py

When there are several channels as here, mew definitions replacing

Kd = deKpd are

= ’X,K K & K = K .
195 i 43P Pl dy dgdy

There are still no additional couplings among the proton channels, or

between the deuteron and proton channels.

It is this hybrid scheme 'D*, based on an orthogonal expansion,

which I have chosen to investigate in more detail and with reference

to a specific deuteron stripping reaction.
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S5e4 Numerical Calculations

To find the actual effect of the non-orthogonality between the
deuteron and the transfer channels, the overlap kernels Kdipk(n’rp)
are calculated for the deuteron = 120 system described in section 2.4.
Stamp(1974) showed that the deuteron incoming partial wave that contrib-
utes predominantly to the Ed = 2,71 Mev(lab) resonance is La=2, Ja=3’
and that the bound deuteron state around the excited 1202+ core with
the largest amplitude has_quantum numbers L;=O, & J;=1. For that reason,
the overlap kernels de and the non-orthogonality potentials Fdd vere

calculated in detail for initially just these two deuteron channels,

with respect to proton channels up to Ly=3s Jb=7/2.

The magnitudes relative to unity of the eigenvalues of
Kd = Z deKpd are instructive as they indicate the fractional non-
orthoggnality of a deuteron channel relative to the combined proton
channels. If the eigenvalues of Kd are small, the channels are nearly
orthogonal, but if they are near unity then orthogonalising will have
a large effect: (1-Kd)-1, which normalises the vectors after orthogon-
alising, will be large. The dynamic effect on the wave-functiocns is
determined by the non-local potentials Fdd' not by Kd directly. They
are related, however, as 1-Kd measures kinematically the deuteron
wavefunction remaining after orthogonalising, whereas Fdd is an energy

operator which acts te cancel the local channel operator [HdéEd] as

much as the channels are non-orthogonal,

The magnitudes of the kinematic effects of orthogonalising are
indicated by the numerical eigenvalues of the operator Ky = ) deKpd
P
summed over all the transfer channels 'p', and hence depend on which

transfer channels are included in the coupled channels calculation,



) ' 93

With the 12C(d,p)130 reaction, at energies below 3 Mev., only the first

- +
four 17¢. states (JB»q > %-,'and g') lead to outgoing proton

J

states @ Ehe energies of the second 5/2% and the 3/2% states are
sufficiently high to bring the proton below its scattering threshold.
Providéd these sub-threshold channels are not near any resonance, as
they absorb no nett particle flux . it should be reasonable to omit them.
However, the pcssibility of resonances in these channels is a delicate
question, tied up with .the occurence of similar resonances in the

inelastic deuteron channels that are below threshold (see section 6.5

for further discussion).

Furthermore; since the Pauli Principle is not yet taken into account,
we should strictly take as an open channel the configuration of a proton
or neutron entering the deeply-bound Osi core eigenstate, and the
remaining nucleon having a large positive energy in the scattering
continuum, In Chapter 6, however, it will be seen that the Pauli
Principle simply means that such channels should be included in the
orthogonalising operators Kd & Fdd’ but (as blocked channels) excluded
from the reaction channel calculations. Anticipating this result, they
are included in Tables 5.4.1 & 5.4.2 for the sake of completeness only:
they will not be included in any coupled channels calculations until

Chapter 6.

Table 5.4.1 gives the eigenvalues of the terms K K for
doPy Pl
different proton channels 'k' driven from the incoming deuteron partial
wave La =2 & Ja = 3, The eigenvalues are further classified by
n= 0,1,2,00 , the number of radial nodes (excluding the origin) of the
associated eigenvector. Also given are the eigenvalues of the total Kd H
2
these are not exactly the sum of the individual eigenvalues because

even for‘the same n value, the eigenvectors for different k may vary

slightly.



Table 5.4.1

. ; = ” z
Eigenvalues for the La 2, J =3 elastic deuteron channel

130 proton | neutront c.f.p | angvlar eigenvalues )_ of Kd
momentun n 2
state | state | state & cfp. (with estimate in sho. model)
j1dp factor
Ip Lydy | B1d Asj Ao Aq
(n=0, p=2)}(n=1, p =4)
open channels
3, f5/2 Op% -.7090 | =.0755 .00055 (.00042)
f7/2 oP% " -.5230 .02637 (.02053)
3 a5, |15y -.9454 | =.9454 16438 (.12974)
% P3 /2 0p3/2 ~.8918 | =.8918 |,37495 (.3976)|.12781 (.13896)
f5/2 0p3/2 " .1698 .00278 (.00216)
f7/2 0p3/2 " .5696 .03130 (.02435)
+
2 5 085/, |-+9261 | -.9261 |.24815 (.2915}|.14145 (.12449)
d575 | 0%/, " 3960 .01735 (.01309)
d 0d " 7275 | .05855 (.04420)
5/2 5/2 62869 48399
éhannels below thresheld at Ed legs than 3 lMev,
+
g 51 oa5/2 L0623 | .0623 |.00112 (.0019) |.00064 (.00056)
d3/2 Od5/2 " ~.0266 .00008 (.00006)
d5/2 Od5/2 " -.0489 .00026 (.00020)
+
%» dy/p | 0d, | 0464 00001
d5/2 0d3/2 n .00004
6300 <4850
Pauli blocked channels
it 4 1, Osy 1 1 .21767 (.25) [.05811 (.0625)

The 'angular momentum & c.f.p. factor' is a factor common to both

vdp & de

2918

1sj]

dotl-la J

A
J_ W

a

(1339,5 359,)
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The fact that the eigenvalues of Kd are as large as 0.629 and
2
0.484 for only the first four 136 states, and are at least approxi-

mately the sum of the individual K Kp d eigenvalues, indicates that

dp

the effects of orthogonalising a deu:ergn to many proton channels are
mostly cumulative, and can amount to a large fraction of unity when
there are many proton channels., Individually the proton channels only
have a small orthogonalising effect, but in a reaction model as here with
up to 15 proton channels, their combined effect can be large. This is
why in section 5.1 we chose the method of'orthogonalising the deuteron
channel to the proton channels, rather than vice-versa. If each proton
channel were orthogonaliséd to the deuteron channels, then because

there are usually many more of the former than of the latter, the non-—
orthogonality effects would be small corrections to each proton channel,
as Goldfarb & Takeuchi(1974) found, rather than a larger effect on a

few channels that can perhaps be replaced by some definite approximation.
The alternative would be computationally more difficult, even though

the overall effects would be the same. Another reason for the choice

will be seen in Chapter 6: by it, treating deuteron - core antisymme-

trisation becomes simpler.

Table 5.4.2 gives the eigenvalues of K for the L;:O, J;=1, I=2

d
o
deuteron channel, which is coupled to the incoming channel by the

120 core from I = 0° to 2+. At incoming

rotational excitation of the
energies below 4.4 Mev, the deuteron energy in this inelastic channel
is negative, and hence the deuteron is trapped around the core until

further reactions occur. On the E_=2.71 Mev resonance, Stamp (1974) shows

d
that the inelastic channel has a large amplitude, and it might be
expected that the orthogonalising effects would then be large. The

table shows however that this inelastic deuteron channel is more nearly
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Table 5.4.2
Eigen-values of Kd for the LaJa = 0,1 &1 = 2 inelastic
deuteron channel
130 proton |neutron cefep.|angular eigenvalues A
state state state momentum n
& cfp. with p_=2n 4+ L
factor B B
JIJgp
Iz Lydy | 033 Aes Ao A1 A2
pngo’ 2' & 4.
open channels
¥ f5 /2 Of5 /2 .1003 | .0031 .22201 il
«10 . o .
f7/2 0f5/2 1003 0217 13
+ A
% d5/2 0d5/2 .3062 | ,0158 ) .00057
0d .1118 .028
3/2 1 283
% P3/2 | OPz/p | +2619 |-.0552 .01608  .00865
Op% «2921 |=.1232
fspo | 9970 | +2186 |-.0056 .00003  .00001
L] - .000 '00016
f7/2 0?7/2 §182 0189 } 33
0 5/2 +054 -.0154
+
2 53 1y .1410 | .1410 .00865  .00341
. ” 00091
d3/2 0d5/2 5222 0440 9 _
0d3/2 .0 0117
Us/2 |oag,, |.3453 | .o809, .00306
Od3/2 0686 .0216
0 0250 .0168

continuedo e




Table 5.4.2 continued
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proton channels below threshold at 3 Mev.

e

2 53 18y |-.8556 |-.8556 31842  ,12568
d3/2 0d5/2 .5130 .0658} .00149
0d3/2 0324 .0102
1?
0dy s, |-+2026 | 0199
Od3/2 ~+.2026 .0648
0 «3425 .1610
Pauli-blocked channels
ﬁf
2 €3 Quy 1 1 -89581 .21508  .0564 ]
«94165 «45782 023568
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orthogonal to the proton channels than is the elastic channel, as the

eigenvalues of X are smaller fractions of unity. If the proton

d
o

channels below threshold are included, the eigenvalues are still less

than a third.

For incident deuteron energies of several Mev., it is the Kd
eigen-value for the n = 2, p = 4 eigenstate (p= 2n+l) that is rglevant,
because the approximate energy levels in potential well 'B' (of Table
2.4.3) of the n = 0,1,2,3 K, eigenstates are ~58.5, =22.8, =1.6, &
+43,2 Mev. respectively. Fgr the incoming channel orthogonalised to
the first four 130 states, the p= 4 eigenvalue is 0.484, whereas
for the inelastic channel the relevant eigenvalue is the very small
0.0168, If the proton channels below threshold should be included,
the two eigenvalues would be 0.6300 and 0.161. The difference between
the two channels stems from the distribution of parentage of the first
four 130 states. As seen from Table 2.4.1, these first four states
have largely I = 0 parentage (the lowest states of 130 could be expected
to have large parentage from the ground state of 120), and (except for
A% i %T) the amplitudes of I = 2 core states are less the 0.35, a
probability of 12%. This means that although the deuteron in the
resonant inelastic channel may spend a significant time interval
trapped in a doorway state, it is still nearly orthogonal to the first
four 130 states, as these states are predominantly I = O constitution.
Contrary to initial expectations, the noﬁéorthogonality fractions are

found to be most important for the elastic channel, and hence will be

significant even for non-resonant single-step reactions.

This shows that the deuteron's amplitude in the internal region
is not a good indication of the fractional significance of non-orthog-

onality effects, It might have been expected from the arguments of
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sections 5.2 & 5.3, that the wave amplitudes and the non-orthogonality
effects would at least be correlated, since the transfer couplings
V(dp) and the transfer non-orthogonality operators de have many
common factors., However, the amplitude in the deuteron inelastic
channel is determined primarily not by the transfer coupling V(dp)

but by'the inelastic coupling v(d-ex) caused by the deformed core,

It is possible, as holds here for the I=2 inelastic channel, for the
inelastic couplings and inelastic amplitudes to be large, but the

transfer couplings and the transfer non-orthogonalities to be small.

An unambiguous estimate of the fractional orthogonalising effects
can be obtained in one approximation by calculating the algebraic
eigenvalues of the Kd operators using harmonic oscillator radial wave-
functions, in conjunction with the full algebra of angular-momentum
couplings and fractional parentage etc, Table 5.4.1 includes a number
of eigenvalues estimated this way, and they generally agree to 20 = 30%
with the eigenvalues calculated using realistic radial wavefunctions.
The eigenvalues in this radial harmonic-oscillator approximation may
be calculated directly as algebraic eigenvalues of the matrix ki:j'

where

J
k . ] ] L}
Na(Lasa)JaI : Na(Lasa)JaI'

_Lb NN
JIJ L.+1=L_ 2 %
= ) ) Anlsg i b‘ a JBqa w(IJJJb; JBJa) 1 8 3
nL,J Jy nlj _1.3L 5, J&l
1 &)
8

Db b

JUItdp L 42L' 2 2 . ;

x y Anl's:j' i*v a Jgd! w(l‘j'JJb,JBJ;) 1' 8 j

b B L L L
n'l'j ¢Pa g J%

i
x <NaLa OO,Laplnl nbLb'Lap><n'1' nbLb,Lé‘ﬂN;L; 00,L;p>

= = - [ N . 11
with p = 2Na+La = 2n+l + 2nb+Lb and 2Na+La 2n'+l* + 2nb+Lb

(the last line is a product of Moshinsky'brackets).
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Figures 5.4.1 & 5.4.2 show the non-local potentials Fdd for the
(Lasa)JaIJ = (21)303 and (01)123 deuteron channels: a contour map
of the kernel Fdd(R',R) is given. Also included are lists of the
coupling magnitudes in a separable expansion of these potentials, as
required to include the potentials in the coupled channels system by
the method of section 2,6, At incident energies of several Mev., as
with the Kd eigenvalueé, for the La=2 channel the n=1 magnitude is
operative; and for La=0 it is the n=2 magnitude. That is,‘the.La=2 &
I=0 elastic channel has a perturbing potential of 9.7 Mev at incident
energies of several Mev., and the La=0 & J=2 inelastic channel has
only 0.3 Mev., This difference correlates with their different Kd

eigenvalues discussed earlier,

The effects of the Fdd potential on the elastic deuteron
channel coupled to the first four transfer states, and on the
transfer cross-sections to these states, are shown in Figures
5¢4.3 and 5.4.4 . The first figure shows the transfer cross~-sections
from the 4 incoming deuteron partial waves up to and including
La=1 & Ja=2, while the effect of the potential Fdd of Figure 5.4.1
on the wave function in the La=2 & Ja=3 elastic deuteron channel is
shown in Figuré 5ol o s Although the wave function in the full
coupled channels system that includes the non-loecal Fdd is not
expected to be simply 1-Kd times the wave function found with local
potentials, the potential Fdd is seen to reduce thé elastic wave
function by about 40% over a wide range of radii, The figures also
show the transfer cross-sections and deuteron wave functions that would
be found by the CC Born Approximation (CCBA) of Stamp(1974), who does
not take the reverse d-from-p coupling of eqn 2.1.24 into account.
Fige 5.4.4 gives finally the wave function orthogonalised by the method of
section 6.3, It takes the Pauli Principle into account more accurately, &

follows internally if not externally the wave function subject to Fdd'



101
Figure 5-4.1

Potential %d(R'RI) for elastic deuteron channel Lg=2.Jg=

10L _
fm in Mev

Separable expansion; _
mean level in deuteron well 'B'
n=0, magnitude= 29407 Mev, =22-4 Mev
1 9.723 Mev +2-7 Mev
2 1.549 Mev +25.5 Mev



102
Figure 5.4.2

Potential }éd(R,R') for inelastic deuteron channel Lu=0, Ju=1'1=2

RI
0 1 2 3 b 5 6 7 8 9 10 fm

0-01
1Fr =i

2 +
3t . '
‘1 ‘
- 0-01

10 .
fm in Mey

Separable expansion:

mean level in deuteron well 'B'

n=1, magnitude= 980  Mey, -22-2 Mev
2 302 Meyv -1.4 Mey
3 064 Mev +16 -3 Mev.
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Figure 543
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55 The (1 = K)% approximation in the non-orthogonality problem

This section will show the possiiility of changing the effect
of transfer channels' non-orthogonality from the existence of additional
kinds of coupling terms to a modification of the usual transfer coupl-
ing terms Vdp etce.y, with a redefinition of the deuteron wavefunctions.
Thié would mean, for example, that in a T - matrix calculation of
stripping amplitudes, we do not have an additional 'non-orthogonality
matrix element' quite different in form from the usual one, but have
instead to take the matrix element of a modified coupling operator.
The redefined deuteron wavefunction is asymptotically the same as before,

80 exactly the same boundary conditions are used, and the same S = matrix

elements result,

.The primary technique is to use the normalised deuteron basis

state %d appearing in orthogonal expansion no. 2 of section 5.1 :

-
ﬁd = (1 = Pn)l ¢d> (1~Kd) (where P = |¢n?~<¢n| ), (1)
and then try to approximate the exact channel Hamiltonian
Hex - <¢dl (1-Pn) [Hi'f - E] (1-Pn)|¢d> (2)

(appearing in scheme 'D* of section 5.3) by an approximate expression

of the form

(1-}(‘1)5‘[11(1 - E,] (1-Kd)j'5 (ef. chap. 4!) (3)
vhere 1 - K; =< f, | (1 =P) #,>,

so that the square root factors of (1) & (3) conveniently cancel.

Note that there is an exact equivalence for all scalar parts of

the Hamiltonians H1 & Hf, the energy E for example 3
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<By 1(1=p) [E] (1=P ) |4,>
= E~<¢d|(1-Pn)|¢d> as P is a projection operator

= B (1-Kd) by the definition of Ky »
and
(1..xd)é E (1-xd)§ = E (1-xd) too.
It also turﬁs out that the approximate equivalence (2) ~(3) holds well
for all one-particle parts of the Hamiltonian. Unfortunately the
(1-Kd)% approximation has to neglect a number of indirect contributions
from two-particle parts of the Hamiltonian. This residual will be

briefly considered at the end of the section.

Returning to the exact Hex (2), after some algebra this may be
rewritten

Hex = [Bg~Bgl =2K,[H;-E;] -3 [(H~E K, - B (4)
where the residual part Hrea contains matrix elements of the

Y & 7)1. parts of H, & H, respectively :

1 1
Bres = 3(Ky Vi, + devid s VKo b Vngpd) . (5)

The approximate expression (3) is now expanded using the

binomial series (T & K not necessarily commuting)

(-)¥r(-0)% = v - gk - am
-1/8 (K%T - 2KTK + TX?)
=1/16 (KT = KTk = KTK? + TK3) = ...
giving
(1-xd)§ [Hd-Ed](1-Kd)%
= [Bg-Eg]l - %2 K; [H-EJ - 3[H-E] K
- 1/8 ( Kg [Hy=Eql = 2 Ky[Hy=E;] K; + [Hy=Eg] Kg )

- higher order order terms (6)
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By comparing (4) & (6), the approximate Hamiltonian is found to match
the exact one at both the zero and first order. Now [Hd-Ed] and K,
commute only approximately, but it can be seen from (6) that we need
only say they commute exactly from second order and up, to justify
neglecting these 2nd order and higher terms. Assuming, therefore, that
Kd and [Hd-Ed] commute if only from 2nd order on, then the expressions
(3)&{(6) become virtually equal to the exact results (4)&(2),except

for the residual H o
res

This remaining Hres is in fact of the same order as the commutation
product [Hd,Kd] which was above assumed to be zero in all terms 2nd order

and up. In detail

f i f i
[Kg0Hy] = de (vpd - vpd) - (vdp - vdp) Kpd

£ i i
and H_ = %de (Vpd + Vpd) + %(V;p + Vdp) Koa *
f i
The Vdp & Vdp are both matrix elements between <¢d| and |¢n> of

" | o< _la ><
negative potentials (of (Vp+Vn)(1 |¢d ¢d|) & (1 |¢n \¢J )Vnp Tesp.),
but they are not expected to match in detail, Thus [Kd,Hd] and Hoes
may be of the same order, and if one is neglected in a temporary

approximation, the other can be too.

Having derived the (1-Kd)§ approximation to Hex’ the deuteron

channel equation is now constructed from the orthonormal expansion

PY = By Q + ¢n Up

A

by pre-operating by <B,| s
(1K) ey (1-2) B-E10-2) 8 -k E 0y 4 (k) w20 ()
The (1-Kd)i approximation is now used, giving
(1-Kd}-é [(1-Kd)%[Hd-EJ (1-xd)% ](1—Kd)-é Qq + (1-xd)'4"v§P U, =0
or (1-B) [B;~BJ (1-B,) g, + (1-xd)'5v§p U =0 (8)

vhere P. is that part, if any, of K, with unit eigenvalues.

d d
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The residual part HreB has been omitted, and this leaves for the

deuteron and proton channel equations, respectively

(1-pd) [H; - E, ](1-Pd) Qd(H) + &vdp Up(rp) = 0 (92)
& [.Hp -E] Up(rp) + 3% Qa(R) =0 (9v)
where iV, = (1.1cd),"‘t vﬁp (10a)

end 4V . = évdera°8p°se " vid (1-Kd),"é . (101)

The channels equations (9a,b) solve the non-=orthogonality
problem because they result from an orthonormal set of basis vectors
¢n & Bd' Their effective channel Hamiltonians [Hd-Ed] &[HP-EP] are
Just the usual local channel operators (along with perhaps an orth-
ogonality condition Pd Qd = 0 to remove any spurious solutions : see

the discussion at the end of section 5.1), and the channel wavefunctions

Qd & Up are asymptotically the same as the usual uy & up, respectively.

There are no additional kinds of d-p coupling terms, as were in the

schemes A & B of section 5.3, This means, for example, that the transfer

- +
T - matrix element may be simply written as Tpd = <Ub gypd| Q4>
with the new coupling potential évpd‘ Further, these new couplings
f ] ]
%Vpd & %Vdp are both proportional to V', the 'post! form of the
deuteron-proton coupling, for which there is a good zero-range local

approximation. The only complication is that the (‘I-Kd)'é factors are

non=local.

A useful approximation is therefore to consider replacing the

non-=local

3Vpa = Vﬁa (1-Kd)-%
= <81 V(-2 | 8.5/ <8, B, |8

by some kind of local equivalent., One method is to replace (1-Pn)|¢d>
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by another expression which has the correct magnitude even if a different

phase. For example, by |¢d> (1-Kd)% :. the norm of this is

2
(1-Kd)é'<¢d|¢d >(1-Kd)i = 1-K;, the same as< ¢d|(1-Pn) l¢d>. T 5
this is allowed, then %Vpd is simply Vpd = <¢n| vnpl ¢d >, the p - d

coupling term usually used in transfer calculations. The coupled

equations are then
(1-1>d) [Hy~E,] (1-Pd) Qd(B) + vdpup(rp) = 0
and [Hp-Ep] Up(rp) + Vg 2;(R) = o,
the usual CC equations except, if Pd # 0, for the orthogonality

condition Pd Qd = 0,

The approximations sufficient for the accuracy of the ordinary

local coupled-channel equations may therefore be listed :

(1) lthat Hres and similar terms may be neglected
(2) that (1-Pn) |¢d> can be replaced by |¢d>< ¢d| 1-Pn| ¢d>% .

i.e, that the non-local ,V is replaceable by the local V s and
% pd pd

(3) that K, has no unit eigenvalues.

The validity of the third approximation was examined numerically in the
last section, and was found to hold provided there are only a 'few'
proton channels coupled to each deuteron channel., In any case, the
effect of unit eigenvalues of Kd is the orthogonality condition Pd sto,
so if the third approximation is the only one disallowed, we generalise
the local CC method to the Orthogonality Condition Model (oCM). The
OCM was originally derived for Pauli Principle effects, but is

necessitated, as described in section 2.5, by any orthogonality conditions.
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If the first approximation is disallowed, and Hres & similar
terms not neglected, there will be additional terms in the channel
equation for GE(R). It is instructive to investigate their magnitude,
if only approximately. The effect of the residual Hree is increased
by the second & higher order terms of the (1-Kd)%(Hd-Ed)(1-Kd)é
3 3
expansion. Let the resultant be H! _, say, so H _ = (1-K4) (Hd-Ed)(1-Kd)
+~H;.eB +« Further, if Kd has a vector u; with unit eigenvalue, then it
1 1
can easily be shown that H;es|ud>= 0 and <ud|HI'_es = 0. That is,

1-F; can be factored out of both sides of E! _ = (1 Pd) 1: L (1 Pd)’

There is no immediate further simplification of the channel equation
-ﬁ’ ' -i ] 9] ‘
(1-Pd) [[Hd Eql+ (1-xd) B! e (1-Kd) (1-Pd)  + vdpup = 0,

but if the tentative assumption is made that (1-Kd)% as well as (1—Pd)%

can be factored out of each side of H;es’ we are left with an expression

£ f
of the order of symmetric-part(deVpd + devpd), = V., 58&Yye

With this approximation, the deuteron channel equation becomes

(1-Pd) (B, + V. o = E4 (1-Pd) Qg + vdpup = 0,

a usual CC or OCM channel equation with an extra (non-local) potential vres'

Pong and Austern(1975) calculated a local-equivalent potential
to the symmetrie part of devpd, a majo: part of vrea’ when the
deuteron channel is orthogonalised to many neutron states ¢n’ and
to occupied proton states similarly. From sections 4.4 & 6.1, this is
the effect of deuteron-core antisymmetrisation, which Pong & Austern
were investigating. As seen in section 5.4, the effects of many

non-orthogonalities are mostly cumulative, so they found their

correction to be a significant fraction of the deuteron optical potential.
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I have already mentioned in section 4.4 that Pong & Austern
have found the symmetric part of devpd to reduce the deuteron
folded of 16O at 10 Mev by 11 Mev, and by 3 Mev at 100 Mev incident
deuteron energy. Pong & Austern saw this as significant, since,as
already remarked, Perey & Satchler(1967) showed that the deuteron
folded potential for, say, Cr(d,d)Cr reactions was midway between
depths of 74 Mev and 108.9 Mev of possible optical potentials at
11.8 Mev incident energy, and attribute the discrepancy to the

neglect of higher-order effects.

On the evidehce of Perey & Satchler, however, it would seem that
the appropriate correction to the folded potential is greater than
that calculated by Pong & Austern : up to 15 or 20 Mev of correction
would be better, It is hence desireable to find a local equivalent
for the remaining part of vres s dev;d e Unfortunately 14 is more
complicated than 1& s and the approximations used by Pong & Austern

to simplify devgd are no longer applicable,
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Chapter 6 A Unified Treatment of Pauli Principle and Non-orthogonality

Effects

The previous two chapters have proposed solutions for two
long-standing problems in the theory of deuteron + nucleus reactions,.
Chapter 4 dealt with the anti-symmetrisation necessary between the
deuteron and the nucleus. Section 4.2 began by looking at the more
general problem of a proton & a neutron interacting with a core nucleus,
and derived a two-particle Hamiltonian for their motion constrained by
the Pauli Principle. In section 4.4, the protom and neutron were assumed
to move together at a2ll times as a deuteron, and the above effective
Hamiltonian was applied to find the collective motion of the deuteron
cluster. Subject to certain assumptions about the core state, it was
found that by renormalising the deuteron-nucleus relative wave function

the effect of antisymmetrisation can be limited to a set of orthog-
onality conditions on thét vavefunction., That is, we have a new
derivation of Buck et al.'s (1976) extension of the 0CHM (the orthog=

onality condition model of Saito, 1969).

In Chapter 5, more general motion of the two scattering nucleons
was allowed. As well as deuteron elastic and inelastic channels,
neutron-transfer reactions were treated. This leads to a well«known
calculational difficulty, because the deuteron and transfer channels
are not orthogonal, but this was solved by finding a new and orthogonal
expansion for the total motion of two nucleons around a core.

Antisymmetry with the core nucleons, however, was not congidered.
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4

This next problem of combining the hitherto-separate treatments
of antisymmetrisation and channel nonorthogonalities is solved in the
current chapter, It will be found that given the particular orthogonal
expansion chosen in Chapter 5, the combined treatment of the two effects

is unexpectedly simple.

To show the basic manner in which the two treatments of chapters
4 & 5 may be easily combined, in sectioné.1 we will consider the case
of only one deuteron and one neutron transfer channel, both anti=-
symmetrised to the core nucleons. A physical explanation for the easy
combination will be given.  This two-channel case is generalised in
section 6.2, to allow an arbitary number of both neutron- and proton-
transfer channels, and in section 6.3 an interesting result will be
found when there is orthogonality to all transfer channels, and to all
nucleon states already occupied in the core, when the system is below

its breakup threshold.

This new result emerging in section 6.3 leads to an extremely useful
simplification of the whole coupled-channels system, such that the only
non-local operators remaining give just orthogonadlity conditions
(which it is shown can be calculated from independent considerations).
In the light of this simplification, section 6f4 expands & nevw view
of the deuteron + core system at low energies. A simple and unified
model is formulated, one which is complementary to the usual models in
that it is most accurate at low energies when the effects of antisymm-

etrising and of non-orthogonal channels are at their largest.
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6.1 A two-channel model with both antisymmetrisation

and non-orthogonal channels

In order to find the combined effect of these two requirements,
a simple two-channel model of one deuteron and one neutron-transfer

channel is considered. The deuteron interacts in a fully antisymmetrised

manner with a target nucleus state ¢A(_1_'1 e gﬂ), and the neutron can

transfer to a state ¢n(£n) around the nucleus fA' to form a nucleus 'B'
with antisymmetrised state ¢B(£n'£1") = Czn-A ¢n(£n) ¢A(£1")‘ The

total system wavefunction in the model is therefore
PY = Ckz_A( uy(R) B,(x)8, (x400) ) + [QP_A( up(rp) Bo(z oz ee) )

=1 Oy - > wylr,em)

where u, = U, ¢d + oy ¢n .

Since ve are interested only in the motion of the two scattering
nucleons, we can obtain a U2(rp,rn) by projecting PY onto a fully

antisymmetrised Cl. ¢A as in Chapter 4 :
Ué(rp'rn) = <Qop = Py 1oy « F> vy

= (1—K2) U.2

where 1 - K, = (1-Kn)(1-KP)

In Chapter 4, however, it was also shown that the best wave function
for the antisymmetrised motion of two nucleons outside a nucleus is

neither u, nor U, bdut QZ(rp’rn)’ where

2
Qz(rp,rn) = (1= Ké)% u, = (1= xé)'% v,

(It is the Q, for different energies, not u, or U,, that form an

orthonormal set, as the effective Hamiltonian for { is Hermitian),
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The two-channel expansion of u, in the model means that

9, = (k¥ By + Fu)

- (1-1{5);‘k %z * (1-14;})’} ¢n (1-1{;)’1’ uy .

Now ¢n is & single~particle bound state, so by the theory of
Chapter 3, -<¢n| 1-Kn| ¢n> = 1., It is therefore better to use
szﬁ = (1-KA)% ¢n as the renormalised neutron bound state :

<Q:1| Q=1 is the consequence of <¢AI¢A>'= 1 =<<¢B|¢B>.

A projected proton state 'Up' is defined next, as in Chapter 5,
by projecting the total 2-particle state 92(rp,rn) onto the internal

state Qn(rn) of the transfer channel :

% %
=K' =K1
U(r) = <0 (z.) [ (1 K2) gt Q (1=K1)% u_(x_)
% %
= - 1 - '
= < Q |(1 K2) %3 - (1=K!)= u_
Substituting (1-K')% v from this expression into the one above for

92, we derive
3 g
= - - =K1
§22(rp,rn) = (1 |Qn><s}n|)(1 Kﬁ)(1 Kp) a% * 9y Up , vhich is

a generalisation of PY = (1-|¢n> <¢n|) ¢dud + ¢n Up’ the

orthogonal expansion no. 3 of equation 5.1.10 .

Note that !, appears in the channel equation of section 4.3 only

2
in the form (1-P2) 2,:

. - (1 -xHE o
(1-p,) 2, (V=KD" Pywy + 2 (1 Pp) LA
3
defining (1-K;) = (1 -[Q > <@ [)(1=K ) (1_Kp)

2
(1 "'lgn> <in)' (1 - K2)

i

as the product of the two-particle antisymmetrising operator
of the Feshbach theory, (1 - K2),
and a projection operator orthogonalising to

2, too s (1 =2 > <) .
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Examination of this expression shows how the antisymmetrisaticn
and non-orthogonality effects have combined, The functions of 1--Kn
and 1-Kp are to remove from the deuteron wavefunction any overlaps
with occupied neutron and/cr proton states in the core. Now, as there
is a neutron~transfer channel Qn(rn) Up(rp), treating the channels!
non~orthogonality by the method of Chapter 5 requires removing from
the deuteron wavefunction any part of the form'protoh + anbound-neutroﬂ.
The interesting result is that these two operations on the deuteron
wavefunction are exactly-analogous orthogonalisation procedures. That
is, the two projection operators (1-Kn)(1nKp) and 1 -|9n><S2n[

(which orthogonalise to the occupied core states and to the state of
the transferred nucleon, respectively) simply multiply. The effect

of channel non-orthogonality is therefore to simply add the state of

the transfered nucleon to the list of deuteron components already

blocked by the Pauli Principle,

-

Once thewave function expansion 2, = (1-K;)% ¢dud + SZnUp
(orthogonal but not normalised) is found, the channel equation is
found by applying to (1-P2) Qz the two-particle Hamiltonian of section
4.3 :

(1=p,) [H, = E] {1=P,) 92(rp,rn) = 0

]
o

ie.< §,| (1-1{;)é [E, - E] (1-K;)% Baug + Qg (1—Pp) v,
ie.< ¢d| (1_x;)% (B, = E ](1-x;)%|¢d> ud(R) +

< #, (1-K;)%|$2n>[ n, - Ep] (1-PP) Up(rp) +

< ¢d{ (1-}(2)’?2 2,@ | 2,> (1-Pp) Up(rp) =0 .

The second term measures the non-orthogonality of the deuteron and proton

i
channels, but here it is zero by construction : (1-K3)?gq = O.
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The deuteron channel equation thus becomes
» o+ +
< gyl =D 1, - B (-85 u ()

+ <f,] (1= ;)% J)f|9n> (1-Pp) Up(rp) = 0

vhere 3
<¢d|(1- 2) ))f|§2n> is the effective d-p coupling coefficient,

and (1-Pp), applied to Up, orthogonalises the scattering proton's

state to the occupied proton states in the core.

The deuteron effective operator <¢d|(1~K;)&[H2-E](1-K;)%|¢&> is in

the standard form encountered in the antisymmetry problem of section 4.4,
and in the problem of transfer non-orthogonalities, occuring in

sections 5.3 (D), and 5.5. There are three basic ways of simplifying

this kind of expression, The first is to expand it in full, using

+
2 L

6.3, and will be seen to produce a large number of terms.

eigenvalue expansions of 1=K This will be done in

A second treatment leads to a much simpler result, but involves
a square~root approximation analogous to that of section 5.5. The
above operator is replaced by
<B.| (1-x1)| ¢ 5 [H, = EJ<@.| (1-K1)|¢ % + (1=p )H! (1=P.)
d 2 d d d d 2 d d’"res ar ¢
where
1=P. is the fully-blockin art of 1--K+ =<4 | 1-K+| g.>
d -2¥ g P d d 21 Pg” 0

(just as (1-Pn)(1-Pp) is the blocking part of (1-Kn)(1pr) j

Define

~K!
1 Kd

and Qd(R) = (1-K('1)é ud(R) as a renormalised channel wavefunction,

as the partially-blocking part of 1-K;, so 1-K; = (1-P,) (1-KY),

&
so on dividing by (1-K&)‘ the deuteron channel equation becomes

(1—Pd)[ Hy + Vpgg = Bg (1-P) 04(R) + (1=By) Yo (1-P)) U (r ) = 0
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where de is the renormalised effective d-p coupling,
including the effects of both antisymmetry & non-orthogonalities:

Y

ap = .(1-Ké)—é <¢d| (1-K;)é vnb|szn>

and vrea is the renormalised residual part of the deuteron channel

Hamiltonian :

Vres = (1-Ké)-é'5£es (1-K&)-% .

The corresponding proton: channel equation is
1-P_) [H_=E] (1=P_) U -P.) Y . (1= R) = 0.
(B) [H - B (1-2) U(x)) + (12)) T,y (1-) 0,(®)

Because @, and Up appear only in the contexts (1-Pd) Qd and (1-Pp)Up
vrespectively, we can impose the orthogonality conditions PdQ " 0 and
PpUP = 0 without loss of physical significance. As described in section
2.5 this may be done either by a Saito potential or by a numerical
constraint when solving the differential equations. Letting

"(Py = 0)" denote a Saito orthogonalising potential, the deuteron

and proton channel equations become

[Hd + Voog = Egla, + de Up + (Pds2d=0) = 0

and [H «EJ]U + Y. Q. + (PUS=0 0.
[Hy = Byl Ty pd d (P Uy §

If further we follow Pong & Austern and find a local equivalent
to the residval potential Vres’ and take local approximaticns for Ypd &
de (see section 5.5), the equations above reduce to the OCM : the usual
local coupled~-channel equations, extended only with orthogonality

congtraints, and these are easily handled numerically in section 6.5 .

A third treatment of the deuleron effective cperator was tried in
section 4.4, but was found to be unsatisfactory if transfer channels

were also present.
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6.2 Neutron and proton iransfer channels together

Normally there is no difficulty in including multiple channels
to allow alternative neutron~ & proton-transfer reactions from
deuteron collisions on nuclei. In certain cases, however, possibdle
double-counting has to be avoided. This can occur, for example,
in intermediate 'doorway states', when the core is excited and the
incoming deuteron goes into a quasi-bound state. As both the neutron
and proton are then in negative-energy states, the system could be regard-
ed either as a neutron-transfer channel with the proton below threshold,
or vice-verga as a proton-transfef channel with a quasi=-bound neutron.
That is, not only are those proton and neutron channels not orthogomnal,
they are linearly dependent, and their expansion coefficients are not

wnambiguously defined.

The non-orthogonality between the proton and neutron transfer
channels is not as complicated as their non-orthogonality with a
deuteron channel, as they at least use the same natural coordinates.
To resolve the uncerteinty of the channels expansion of uz(rp,rn),
all we have to do is to arbitarily decide whether the doubly=bound
configurations are to be included in what kind of transfer channel,
and then remove these configurations from all the other channels by
an orthogonaliging procedure. We arbitarily decide to favour (d,p) here

over (d,n) reaction configurations, wherever a free choice is possible.

The expansion for u2(rp,rn), previously just ﬂnup + ¢dud’ becomes

. u2(rp,rn) = Zi

B, (1 =118, > <8, ) vy (=)
+ ) ¢p

w () + () ()
J J i
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where ¢n (rn) & ¢p (rp) are orthonormal collections of neutron &
i J
proton bound states, respectively,
and where antisymmetrisation is not yet allowed for.
I1f we define the 'projected' variables Up =*:¢n| u,> and
i

i

U =<¢ [ u, > , then we have equivalently
n pJ 2 _

wEpm) = ], T, ()

+ ) (1= ) |¢n ><¢n| ) U (rn)
J i i i J
+ (1= % |¢n; <¢ni|)(1-.zj|¢pj><¢pj|) |¢d> ud(R).

Observe how double ¢n ¢p configurations are removed from the
i
v, (rn) term, and how ud(R) has taken from it all parts that
3 .
describe either singly or doubly bound nucleons. In this way, all

three kinds of channels are orthogonal by construction.

¥hen we include antisymmetrisation with the core nucleons, the

n & ¢p bound states are replaced in the model by the orthonormal

¢
i

J : i
sets of Q. = (1=K )% ¢ and o = (1=K_)* #_, respectively.
n, n n, Py P P4
Then, as in the previous section,
(1P ,p(zper) = | @, (1-P) U (r)
i i i
+ 7 a_ (=P U (r)
5 Pj n’ "n;''n
+
+ (1 = Kz)é I ¢d> ud(R) 2

3

o are operators redefined vy

vhere P; and K

1-F, = (1= ) |e_ >0 |) (1 =-P)
n 1 ni ni n

©
=
[N
5
|

g
i

;= G-lln, >, DO - “'%'%;%;' YK
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The channel equations again follow from (1-P2)(H-E)(1-P2) Q,=0,

so that the deuteron channel equation is
+ +
<B,1 -k (5 - B1(1-k3)% (8> w, (R)

1-P ) U
+ L xdp ( p) P

+
) . (z)) + § xdnd (1-P}) U, = ©

i

where

+1\%
xdpi = <¢d|(1-K2) an lQn;

+y%
& X3 o= <¢d|(1-x2) vnp| Q5>
J J
are the effective (but not renormalised) transfer couplings.

Again as described in the previous section, there are two
satisfactory ways of treating this standard form of the deuteron
operator. The method using a (1-Kd)% square-root approximation was
demonstrated then: I will now expand the operator in full, using an

eigenvalue expansions for the antisymmetrisation operators Kn & Kp.

Calling 'N' the number of bound but unoccupied neutron states
Qn s i=1 o ¥ (i.e. N residual nuclei for neutron-transfer reactions),

:
and with 'Z' such proton states, define the eigenvalue expansions of

Kn & Kp from the forms

(k) = 1= 7 Jwosaw | &@k)Ea1o ] es<w |
foNe1 B3 By P j=z+1 P35 P;
The w's are all orthogonal but not necessarily normalised: the eigen-
2 2
values of K & K are actually ||wniH (2 - priH ) and

2 -
”“p,” (2 - Hijﬂz). respectively.
J

. Define also w

ni Qni for i=1 9 oo ,N
Q fOI‘ j = 1 g oo ,Z
. P3

1
so (1=K = (1= § lw>w [)@= ] [v><uw]|).
¢ i=1 "3 My =1 Py Py

& w
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The full expansion of the deuteron operator is therefore

A (1-1(;)%'[1{2 - E] (1-KZ)%| By>

[Hy = E,] 21' Kgpp LHpte, +e,=EIK ., -1 Ky, [E atep +e,-BlK,
)
i

d:pi i i“ 3 j j j:d

+ X (e, +e =~ E) K

3 d:njpi i pj njpimd

LB T %W o B ) = § By, ¥y ova * Vaow K 1)
’ i d_.pi pi'd d.pi pimd ) dsn, n_ :d dznj n.sd

J 3 J
+ 2 K. v L3 K o + 2 K.. v L 'K .
ix d.pi Py Py pk.d 31 dmnj nj.:n1 n,
+ ) (K, _V +x,v.K,)
13 d.pi pi.nj n d.nj nj.pi pi'd
ij d.njpi njpi.d d'njpi njpimd
= I (K3.n . 'n,p ep Xp za ¥ Kd'p vp :n.,p Sn,p ad)
ijk J*1 T§ L7k kT T kT 1 i1
- ) (X v K .. + K ¥V K _ .
{351 d:njpi njpi.n1 n, ¢ :d d.ml n1 jpi njpi.d
¥ ’ Kd'n vn in Kn sd
£k OFPgPy PPt PPyt
where
Kgip, =< ¢d(r)|wn (rn)> & Ky, =<:¢d(r)| wp_(rp)>
i i 3 J
;. =< (x)|w () w (r)>,
d.njpi d n,'n p'j P
and L & wp are assumed to be eigenvectors of Hn & Hp at energies
i J
eni & epj s Tespectively.

The 'V' terms are matrix elements of Vnp(g)

e.ge V¥ oom<w, () w. (v ()] w, (2 )> .
njpi.pk nj n Py P I np I P " P

In obtaining the results of section 6.5 that use a non-local
qq* the Ty, of section 5.3(D) was generalised as indicated in

¥
the present section to include the blocked and the open parts of K2 o

potential F

This aspproximates the above expression by its 1st, 2nd, 5th & Tth terms.
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6.3 _Complete Nonorthogonality

Consider now the relatively complete model that includes Pauli
blocking from all the core nucleons, and that orthogonalises to all
transfer channels limited only by total energy and total angular
momentum, In a first-order analysis, the occupied states in the core
are the lower-energy eigenstates of the collective core potential,
and the transfer states are just all the unoccupied states at higher
energies, up to some limiting energy such as the breakup threshold.
This means that the model's deuteron channel will have to be orthogon-
alised to all eigenstates of the potential, occupied or not, provided

the states have eigen-energies below some limit,

The collection of single-particle negative-energy eigenstates

is physically complete for unperturbed nucleons at negative energies:
it ies now further assumed that the set is still complete for negative-
energy nucleons even in the full deuteron + core system. The treat-
ment of the deuteron + core system as a three-body proton + neutron +
core system by a full three~body analysis (e.g. Faddeev equations)
would allow for the perturbation of a bound neutron by a scattering
proton, for exawmple. The current assumption is a kind of 'bound
state approximation' (Levin et 2l,,1978) for the three~body system.
It is assumed that whenaver a nucleon has negétive energy, it is
always in an eigenstate (or a linear combination of eigenstates) of
the core - nucleon potential. This implies, for example, that virtual
transitions to negative energy states off-the-energy-shell are

approximated by multistep real transitions to on-shell states. (For

a preliminary investigation of off-ghell effects in deuteron reactions,

see Pantis, 1979.)
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This assumption is significant for calculating tha scattering
of deuterons below their break-up threshold at Ecm = 2,225 Mev. At
these low energies the sum of the individual proton and neutron
energies is less than zero, so that one of them is always in a negative
energy state., But since the deuteron-channel wave function is orthog-
onalised to all such bound states, the wave function in the internal
region must therefore vanish. Of course the deuterén channel is still
significant asymptotically, as it is orthogonalised only to bound
states, which have finite range. In the internal region, though, all
the system's wave function is taken by ij combinations of pairs of
nucleon states ¢ni(£n) ¢p (gp) , eigenstates of the core - nucleon

potential.

The assumption above therefore declares the set { ¢ni¢p'} to
be complete for all proton + neutron states of negative totai energys
states below the deuteron breakup threshold. They are by construction
conplete for one-particle states of protons or neutrons separately,

but it is now assumed they are complete for the fﬁll systen.

In the model of section 6.1 that includes both antisymmetrisation
and transfer channels, the operator 1-K£ = < §, [1 = KZI ¢d >
orthogonalises the deuteron wavefunction ud(R) to all bound states of
protons or neutrons, occupied or unoccupied, The 1-Kg operator is
then factorised 1-Kg = (1'Pd)(1-K&) into a fully-blocking part 1-P,
and a partially-blocking part 1-Ké. The second part renormalises the
wavefunction Qd(R) = (1-Ké)Jé ud(R), while the first part of unit

eigenvalues produces an orthogonality condition Pdszd = 0O,



125

The 'bound state approximation' of abeve is that 1-f& doeg have
a fully-blocliing factor 1--Pd that blocks deuteron eigenstates at least
up to the breakup threshold. The assumption is required because with
realistic model parameters, as shown in section 5.4, K; ﬁill only
have eigenvalues near but not exactly unity. Now in a model that
includes both exactly, there will be only a small effect of changing

an eigensolution in Kz from nearly-blocking (in Ké) to fully blocking

(in Pd), but it is numerically much easier to deal with Pd and

orthbgonality conditions than with K& and renormalised effective

interactions. Thus we now develop a method that includes most of

the effects of the K; operator , without having to calculate it in

full, by putting as much of K, as possible into Pd’ and ag little into

d

Ké; even if minor approximations are necessary.

The full deuteron-channel equation for the renormalised §2d(R) is

dn. n

By + Voog ~ Bql Qg + zi deiUpi + zj : 4 jU x + (Pdg2d=o) =0

g

where de & de are the renormalised effective transfer couplings
i J

| - - +13
€.8o dei = (1-K&) <Py |(1-x2) vnpl Qni> "

\'f is the renormalised residual Hamiltonian (see section 5.5),

and '(Pd Qd=0)' represents a Saito potential or a numerical

condition to ensure that Pd Q 5 = 0 «

If Ké were small compared with Pd’ then the transfer couplings

dei etc. would reduce to the usual <¢d[ vnp |§2n; « Then the only

remaining effect of both antisymmetrisation and nonorthogonality will

be the simple orthogonality condition Pd g = 0, and, to a lesser
extent; in the residual term Vres' The 'bound state assumption' enables
P. to be calculated directly, without having to first calculate the

d

ot f - 3) -
¥ 7 t » * L &
full K, = i j Kd*,(ﬁ sT_) K“i(r ,R) & rA as in sections 5.2 & 5.4
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The eigenvectiors Yy (11=0414..) of the projection operator Pd are
the deuteron states fully blocked by the complete collection of all
proton & neutron bound states, occupied or not. As explained earlier,
the sum of the neutron & proton energies must be negative, so it is now
assumed as an extension of the 'bound state approximetion' that the
wN(R) are also negative~energy eigenstates of some deuteron Hamiltonian

H_., say, assumed to have potentials with Woods-Saxoﬁ forms. Approximate

N

forms for the H_ are now derived from physical arguments.

N

The four most important properties of the states wy are
(1) The correct angular dependence,
(2) the number N of radial nodes (excluding origin),
(3) the radial size of the internal oscillations, and
(4) +the correct ésymptotic decay form.

These are matched as (1) only bound states w_ with same angular

N

momentum gquantium numbers LaJa as those of the deuteron channel'd' are
considered, This means that (2) we need only consider a collection

w, for varying 'N', the number of radial ncdes, As the states N=0,1 .0

N

are at progressively higher energies, the series should be stopped
after the highest-energy deuteron state that can still be fully

constituted by the bound neutron & proton states. This criterion
may be judged approximately using a harmonic oscillator expansione.

That is, if =2n_ 4+ 1 and
9 ) P P P

=2n + 1 are the maximum
p=~max n n

n=max

oscillator quantum numbers of the bound p & n states respectively,

then the series is N = 0,1, .. ,Nd_max'where 2'Nd~max + La equals

P

%+
P pemax nemax®
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Property (3), the radial size of the internal oscillations, is
determined by the fact that Hd by itself is at least an approximate
Hamiltonian for the deuteron + core system, This means that we can

use the same radial form factors for the potentials in HN as in Hd. |

Ensuring (4), the correct asymptotic decay for the radial

wavefunctions, is a little more complicated. This is because, although

the deuteron's ¢d(r) has a definite decay rate proportional to e-kdr,

kd = ('Sfd ed)i, By ™ 2.225 Mev., the nucleon bound states have vary-
ing decay forms e-ﬁﬁFn 0 k= (gﬁgn engé, as their binding energies,

e’ vary considerably. Fortunately, the dominant asymptote comes from
1

the least=-bound nucleon state that can still contribute to wN. Let

'e (N)' denote the energy e_of this state. Using
“ ]
* E 3 *
Koa(Zpr) = 8 F(2Ror)” fy(azam) = 1 g vpy(ey) wy(@)

the asymptotic form of wN(R) is proportional to e~Xpf  with

ky =2 kg + 2 kn(n), and thus wy

energy of ey = ( 2%en(N)% + ed%)a.

must be at an effective binding

The procedure adopted is thus to approximate w_ by eigenstates

N
of a Hamiltonian HN' which has potentials with the same form factors

as those in E but whose depths are adjusted to give at a binding

d’

enzrgy of e, a state of angular momentum LaJa’ and with N radial nodes.

N
The orthogonality requirement Pd Qd=0 is then the collection of

conditions <w [ Q> = 0 for N = 0, .. - Neither K, nor even

’Nd—max

Pd has to be calculated in full.
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It is important to have the correct asymptotic form for the wH's,
to have good matching between the asymptotic deuteron form ¢d §2d,
and the internal expansions % ¢n1Upi etc., that replace it. The
Yy forms are removed from the deutergn wvavefunction in the internal
region, so it is important that what is removed here closely match

what can be alternatively expanded in products of proton or neutron
bound states.
These considerations will be used in the numerical model of

sectién 6.5, to replace the full non—lpcal potential by a suitable

set of orthogonality conditions on the 1adial wave function.
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6.4 A Unified Model

In the previous section, it was shown that when there is
'complete nonorthogonality' between the deuteron channel and the com=-
bined transfer channels, by making a 'bound state approximation' the
system's equations may be considerably simplified. I want to show now
how these simpler equations can be more directly derived from a simple

and unified physical model.

The alternative model constructs the total system wavefunction
from two parts. The first part is a sum of all possible pairs of
neutron and proton motions, such that one of the nucleons has negative
energy. The second part appears only far from the nucleus, and describes
the asymptotic form of a deuteron as a bound n=p bairs with specific
relative motion ¢d(£p7£n>’ The matching of the asymptotic form with
the internal sum of pairs is not, as in R-matrix theory, at a predeter-
mined radius, but is achieved, as described in section 6.3, by realistic
orthogonality conditions con the deuteron's state of collective motion.
These orthogonality conditions ensure that the deuteron channel has no
unwanted overlap with any deuteron-like forms of the n~p excitations
in the first part of the system wavefunction. They also solve the
twin problems of non-orthogonalities between transfer channels, and of
antisymmetrisation with the core nucleons, because they ensure that
the system's state in the internal region is described by the orthogonal
neutron plus proton combinations around the nucleus that are not blocked

by the Fauli FPrinciple,

The model tries to be complete only at incident deuteron energies
below the deuteron breakup threshold. At these energies, the n-p

combinations may be accurately treated without a full three-body
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treatment, since at least one of the nucleons has negative energy, and
by the bound state approximation this nucleon is in a state known from
the core's single-particle potentials the negative-energy state is
approximated by linear combinations of the negative-energy eigenstates
of this potential. This means that each proton & neutron combination
looks like a transfer channel, with one nucleon transferred to a

bound state of a possible residual nucleus, and the other nucleon
either with positive energy in a scattering state, or with negative
energy in a quasi-bound 'doorway state'. Thus the original three-body
problem of neutron & proton & core can be modelled by sums of two-body
channels, because some two of the three bodies are always bound together

and at most one body is in a scattering state.

Exactly which two-body channels need to be included is determined
by the usual considerations of total energy and total angular momentun,
and also by the Pauli Principle. For, when considering n-p components
of the total decuteron plus core state, 2all components not specifically
included are blocked. Thus we should specifically include those
transfer channels that together give most of the components of deuterocn
plus core states at energies of interest, but deliberately leave out
channels that give neutron plus proton components that should be
blocked by the Pauli Principle. This is easy, because such transfer
channels are themselves not allowed by the Pauli Principle, because the

transfered nucleon cannot share a state with a core nucleone.

There is a consistency requirement in constructing realistic
models along the lines above. Because the usual deuteron - core relative
state is now replaced in the internal region by n & p combinations, the
interactions between these combinations must be consictent with what is

expected from the deuteron - core interactions, and vice versa. For
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)

example, if a deuteron - core interactior is used which gives inelastic
excitations, and/or resonances, or interrediate doorway states, or even
simply spin-orbit couplings, then if the same effects are desired the
same total Hamiltonian should be applied to all the transfer channels.
Thus there shculd be couplings between transfer channels generated

by core (de)ewvcitations. The potentials used in the transfer channels
sho?ld be adjusted to give any deuteron resonances at the required
energies, To model doorway resonances that are induced by inelastie
core excitations and the scattering nucleons éoing into gquasi-=-bound
states, there must be transfer channels in which the 'free' nucleon

is trapped below threshold in some resonant eigenstate. There should

be consistent spin-orbit couplings for both nucleons separately, bound
or unbound. Finally, since a deuteron cluster state so naturally includes
the effect of Vnp(rp-rn) in correlating the neutron & proton motions, if
this is imporiant in the internal region we should include between
transfer channels the couplings induced by the Vnp term of the Hamil-

tonian (the coupling given by equation BN 62T ) w

Once these consistency requirements are sorted out, the handling
of deuteron -~ core reactions by this model predicts further phenomena
more accurately. Since modelling by combinations of single=nucleon
states is more microscopic than by modelling by clusters, it should
allow for more 'intermediate structure' in the predicted cross-—sections.
Again, the possible deformation and polarisation of the deuteron's
internal state by the core's potential is now automatically taken into
account, as in the internal region the neutron-proton relative state

is no longer restricted to a predetermined ¢d(rp-rn).
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6.5 Numerical Calculations

In section 6.1, it was found that the antisymmetrisation
between the deuteron's and the core's nucleons can be treated as
additional +terms in the deuteron's orthogonalising operator K; (p117).
This is because each core nucleon blocks an otherwise-feasible
transfer channel, and therefore requiring the deuteron channel to be
orthogonalised to all transfer channels (open or blocked) is equi=-
valent to orthogonalising as required by the Pauli Principle.
It means that in a particular reaction calculation, ‘dummy channels'
are set up that are blocked by the Pauli Principle, and hence not
included in the set of coupled differential equations to be solved,
but are still included in the orthogonalisiﬁg operator Kd (giving Kz}, & the

nonlocal potential Fdd of section 5.3(D) as generalised in section 6.2 .

For this reason, in the 120(d,p)130* reaction modelled in section
5S¢4, two dummy channels are now included, corresponding to the trans-
ferred neutron entering the Os eigenstate of the core collective
potential, with the 120 core either in its 0% ground state or in its
2% first excited state. The contribution of these channels to the
eigenvalues of K; has already been given in Tables 5.4.1 & 5.4.2 of
section 5.4. Their effects on the calculated cross-sections are now
illustrated, for single-step direct reactions to the first four states
of 130, at a non-resonant energy of 2.2 Mev. Figure 6.5.1 reproduces
the local and transfer-orthogonalised calculations of 5.4, & adds a further
aet of curves that result when the 0s dummy transfer channels are
included in the nonlocal potential Fdd' The eigenvalues of Fdd for

the La=1, Ja=2 deuteron channel, previously 25.2 Mev & 17.1 Mev for the

Op & 1p eigenvectors respectively, are now increased to 44.8 & 19.9 Mev.
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It is seen that orthogonalising to the Os state, as required-by
the Pauli Principle, increases again, in three of the four curves, the
effect of orthogonalising to open transfer channels, Since the
'transfer' of a proton to the Os proton state is isotopically
_ analogous, this change should be doubled to show the effect of both

neutron and proton antisymmetrising.

12

The question of Pauli blocking to the 8 nucleons of C in the

Op shell needs to be considered. Strictly, since this Op shell is
two-thirde filled, there should be addifional dummy channels for - the
occupied Op sub-states, and we should reduce the contributions to K; &

of the 3 and 3/2” states of 130, vhich involve Op-shell neutrons

12 315, ,313/27
13 1%
therefare involve neutrons partly blocked by the Op core nucleons.

Paa

around the “C core, to various amplitudes A s and which

The analysis cf section 6.1 in fact allcews for arbitary overlaps
between the transferred neutron and core neutrons, since their states
are all described in their Q_ = (1=K )% u_ = (1-x')‘% U_ form, and

n n n n n
however large the antisymmetrisation operator Kn may be, all the Qni
form an orthonormal set complete for a specific nuclear shell. Now,
all the Qi , occupied or not, are combined as required in section 6.1

d

any other complete and orithonormel set of neutron states, such as

to form K. =) <@.|Q><Q [§.>. The same X' would hence result from
d i a i i “d

that set from the simplified model which took the Os shell as all
oceupied, and all the Op states as unoccupied and open to transferring
neutrons. This simplified model is just that numerically solved above.
It gives the exact K; operator, and is therefore used as giving a

good approximation to F Thus provided the correct cocefficients

ad”

-

Ailqﬁ are calculated in a properly antisymmetrised 12C-p1us—neutron
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model (see e.g. Friedman, 1967, or a sghell model calculation such as
in Cohen & Kurath, 1967), a good approximation to Fdd can be found
by assuming full shells, without including in detail the antisymmetr-

isation effects of the Op shell nucleons of the core.

In section 6.3, it was shown that when all transfer channels
are included, and the Pauli Principle fully accounteq for, at incident
energies below the bdbreakup threshold the eigenvalues of KE approach
unity, to a good approximation the orthogonalising of the
deuteron channels may be accomplished by conditions of 'complete
orthogonality', instead of by the nonlocali potentials Fdd’ This
approximation, and the 'bound state assumption' on which it is based,

may now be tested numerically.

The 120((1,13)13C* reaction at 2.2 Mev is chosen again : the approx=
imation should hold well at deuteron lab. energies below 2.60 Mev,
the threshold for deuteron breakup (d,np)e. Initially, only the

first four 130 states are allowed residual nuclei. Table 6.5.1

3
d

partial waves up to La=3, Ja=3, calculated by summation as illustrated

lists the eigenvalues of K. for the deuteron elastic channel, for

in Table 5.4.1 for the La=2’ Ja=3 channel. The contribution of the
Os dummy channels hecs been included twice to show the effect of the
Pauli Principle for both neutrons and protons, as explained above.
The K; eigenvalues in the table measure the effects not only of
orthogonaliaing to thé first four 150 states, therefore, but also of
orthogonal icing to the ‘'Pauli blocked' dummy channels, As shown
earlier, Kz already includes orthogonalising to the Op states,
occupied or uwnoccupied, so the eigenvalues in Table 6.5.1 include in

full the effects of both transfer-channel and Pauli Principle

orthogonalising.



Table 605.1

Numerical K+

<

d

eigenvalues,

for the elastic

deuteror channel,

relative to the first 4 150 states,

with the required Pauli~tlocked channels,
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Elastic partial wave

K! eigenvalues, @ p= 2N + L_ level.

L, J, N=0 N=1 N=2 N=3

o0 1 1.002 € 0| .812 @ 2| .612 @ 4 .295 G 6
1 0 TOTE 1| 643 €3 | 32365 | 31 @7
1 1 £985 @ 1| 734 .390 " AT2 0w
1 2 975 ™ .848 465 204 "
2 1 816 @ 2 | 467 @ 4 | 198G 6 110 € 8
2 2 .934 @2 | 537G 4| 261G 6 <133 @ 8
2 3 848 € 2 | 632G 4 | 323 ¢ 6 .1%36 @ 8
3 3 781 € 3| 348 @5 | .235 @ 7 .080 @ 9

(N.B. the 'N' here and in section 4.1

is identical to the 'n' of section 5.4)
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Inspection of Table 6.5.1 shows that for values of p less than
four, the eigenvalues of K; are all greater than 0.466, The value
of p = 4 is the Pacmai of section 6.3, and corresponds, using the
harmonic oscillator approximation, to the eigenvector having an

Y2y .. dpatenon potential well (113.5

expected energy level in the
Mev deep) of + 3 Mev. Thus the p = 4 eigenvalues are those relevant
to deuteron - 120 scattering at several Mev, Because these are
nearly all greater than 0.5, when the nonlocal potentials are replaced
by orthogonality conditions, it is more accurate to approximate yhe
eigenvalues by unity (the effect of making its eigenvector into an
orthogonality condition) than by zero (the effect of ignoring that
eigenvector). It is time-consuming to calculate and take into

account the full nonlocal potentials F.. for each energy and each

dd
partial wave, whereas as explained in section 6.3, the orthogonality
conditions required may be calculated more directly from simpler and

independent considerations.

Hence the decision is made to approximate the effect of the
nonlocal potentials by orthogonality conditions, that orthogomnalise
the deuteron elastic channel to eigenvectors of the deuteron
optical potential, with quantum numbers p = 2N + La from 0 to 4
inclusive, The transfer cross-sections now predicted are also
shown in Figure 6.5.1; these are found by solving (subject to the
orthogonality conditions just described) the simplified local coupled-
channel equations of page 118. The residual potential vres has been
incorporated into the potential well seen by the deuteron, by using the
optical potential 'Bf of Table 2.4.3 . This potential reproduces elastic
scattering data, and hence includes a2 local equivalent to a major part of
vres ¢ that part (calculated by Pong & Austern, 1975) derived by orthog-

onzlising to at least those bound states that are occupied (and hence

blocked by the Pauli Principle).
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Modelling the '2¢(d,p)'>¢* reactions on the E, = 2.71 Mev

d
resonance, the starting point of the present investigations, has proved
to be quite complicated. Although the fit to experiment has not

been dramatically improved over that shown in Figure 2.4.3, the
consideration of this multi-step reaction has always been instructive
for estimating the effects of channel nonorthogonalities and of

the Fauli Principle. Indeed, as explained in section 5.4, the
fractional non-orthogonality effects are expected to be no larger

over the resonance than elsewhere, since they.are largest for the
elastic deuteron channel, and small for the inelastic deuteron

channel responsible for the resonance. Nevertheless, taking the
channel noncrthogonalities into account has a minor but definite

effect on the resonance calculation, so this will now be considered

in detail.

To model the resonance, we must first decide which target and
which transfer states to include in the coupled channels system.
Since it is time~consuming to recalculate the nonlocal potentials
Fdd for each incident energy and partial wave (especially when looking
for the resonance in the first place), we try to choose a channel
set in wvhich the channels are all nearly orthogonal, or are nearly
'completely nonorthogonal' and require numerical orthogonality
conditions as described earlier in this section. The choice of the
channel set may be accomplished by leaving out the second 5/2+ and
the 3/2+ 13C states and their transfer channels, so that the I=2
inelastic deuteron channels are nearly orthogonal to the remaining
transfer channels for the reasons given in section 5.4. (If these
two transfer states were to be included, there would be large non-

orthogonality effects irreducibly between them and the inelastic
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channels. Resonances and complicated resonance interactions would
be possible in both kinds of channels, since at Ed = 2.71 Mev all

these deuteron and proton channels are below the scattering threshold.)

Therefore, the only nonorthogonality effects are numerical
orthogonality conditions on the deuteron's elastic channels, just
as described earlier in this section for non-resonant direct reactions.
The effects of these conditions here are to reduce the amplitude of
the elastic channel in the internal region, and hence to reduce the
coupling of the inelastic channels to the scattering continuum. " This
coupling is in fact reduced to a more realistic level, considering
the extra transfer couplings from the inelastic deuteron channel'to
the proton transfer channels. It is precisely this additional
coupling to the transfer channels that is superfluous in usual
models, since to some extent the deuteron and transfer channels are

non-orthogonal and describe the same physical configurations,.

The effect of the orthogonality conditions over the Ed = 2.71 Mev
resonance is to reduce the coupling between the elastic and inelastic
deuteron channels, and to sharpen the inelastic resonancet Figure.
2.4.1 showed how the resonance was broadened by the proper inclusion
of the reverse transfer couplings. The éffect of the orthogonality
conditions is to reduce some of this broadening, since part of this
coupling was already present as coupling to the elastic channel,
because that channel has considerable overlap with the combined

transfer channels.,

1reducing its width from %4 to 22 kev.
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On the inelastic resonance, the wave functions { in the elastic
channel are significantly affected by their orthogonality conditions.
This is seen in Figure 6.5.2, which shows the effect of the one orth-
ogonality condition <1d3|w> = 0 on the wave functicns Y, which on the
system resonance are purely imaginary,. Because its binding energy

is nearest to the continuum, the 14, eigenstate of the deuteron potential-

3
well is at p= 4 the most influential of the orthogonality conditions
detérmined previously. Without the <1d4w> = 0 condition, the reson-
ance appears at Ed= 3.025 Mev, whereas once the condition is enforced,
the change in coupling (sece below) shifts the resonance to 2.725 Mev.
(For this reason, although the phase shifts of the 'local' and 'ortho-
gonalised' Y-functions in Fig. 6.5.2 are identical, the functions
themselves do not as&mptotically coincide.) Their significant diff-
erences are in the internal region. Compared with the off-resonance
wave funciions shown in Figure 5.4.4 (note the change of scale), the
res&nant functions here are large internally. However, the original
local y =function and the 1d3 bound state each has’'1 internal node at
about 2.5 fm, and when they are required to be mutually orthogonal,
the y-function is forced to have 2 internal nodes, at 2.3 & 4.5 fm.
This will typically imply more cancellation in radial integrals over

the internal region, and hence reduced couplings to other channels

ag was also found earlier.
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Chapter 7 Conclusions

In this short chapter, I summarise the main conclusions of

the thesis, and give some indication how they relate to previous work.

The principal conclusions in the theory of cluster interactions
between deuterons and a nucleus, when transfer channels and the Pauli
Principle are taken into account, are
i) the effect of orthogonalising a deuteron channel to transfer

channels is additive on the number of transfer channels,

ii) the effects of the Pauli Principle on the deuteron channel are

additive in the same manner,

iii) if the cumulative effects of i) & fi) are less than a threshold
(ie. if the eigenvalues of K; are less than unity)
then they can largely be absorbed in a renormalisation of

the deuteron-to~nucleus relative wave function,

as suggested by Buck et al.(1977),

iv) if the cumulative effects are at the threshold
(ie. if KZ has unit eigenvalues)
then the relative wave function is subject to orthogonality
conditions as in the OCM. These conditions require the
wave function to have 2 minimum number of nodes in the

internal region,

v) if all transfer channels and all Pauli Principle effects are included,
then the number of unit eigenvalues is increased.
The orthogonality conditions implied by iv) may be found

directly using a simplified model.
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The orthogonality conditions affect the relative wave function
mainly at small radii in the internal region, tending +to make it
small and oscillatory there. This reduces the effective coupling
from the elastic channel, as calculated for example by a T-matrix
integral using the wave function. This effect goes part way to
explaining the improvement found in the DWBA when the inner region

is not included in the radial integrals,

A further effect of the increased number of internal oscillations
is to make the cluster-cluster potential well look deeper, while if
a deeper well was already used in the model, the orthogonality
conditions would be less important. This explains why the deuteron—
120 model of the thesis used a well depth of 115 not 80 Mev, and still
obtained reasonable results for the Ed=2.71 Mev resonance (see section
2.4), even though preliminary calculations by Pong & Austern of the
second-order effects on the well depths favoured the shallower well
(see section 4.4). It would appear that the orthogonality conditions
and the second-order potentials vres have opposite effects on the

depth of an optical potential required, and that the orthogonality

conditions have an overriding influence.
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Appendix 1

The operator 'K' with core correlations

Start with the core correlations expressed by the core
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state

¢A(£1,..,£A) being written as a linear combination of anti-

symmetrised product wave functions:

=3 ®
X

is a Slater-determinant function of size A * A,

¢A(£li--r£A) a)\ A(_l’-;lr--v_I_'_A)

%

A

where

and describes all the quantum numbers of the 'A' single-

A

particle wave functions (Xl,lz,..,kA).

- For example, A

((jlml)l (jzmz)' .o '(jAmA))

)-&

and ¢ (A

A det ( wj

m
1

Note (i) ay is antisymmetric for particle exchanges, i.e. if for some
A:A permutation O we have A' = OA, then ay, = (—1)0 ay
(1i) I |ay|? = (an) "t
A

The Pauli operator 'K' is defined by its kernel function

k(ryrz,) = A< ¢, (r,x,,..,x,) | Op(EgrIyrer,) >
=AL a a <O (r. seerr ) I &, G e s 5, X5
T N A At EL A
Now QA = (A!)_¥ det (w. m !t W oo ) so
I1™ Ia™a
I | 1 A k+1 I I
<®. (x.,..)|®,  , (x_ ,..)>=—1I (-1) <w, <Minor
A
3 (-1)%¥1 lw"m'> |Minorx, "
2=1 I™e ’
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<Mi .o i .o >
and as Mlnork'k(gz, 'EA) | Mlnorx,'l(gzl ’EA)

g . 5
= (-1) (a-1)! if A=0A' except perhaps kak#jimi

0 otherwise
we get
7 al TN ><
k(£0'£1) - aA aAl 2 F(A,k; ’ ) [wjimi(EO) wjkl'llk(El)l
AA? k2
= - o o =4 g - =4
where F(A,k; A',R) = (-1)° if A {Ak_gkmk} A" {Aw_mew}
0 otherwise

In the A' summation, all the (A-1)! sums over Xi 5rE AA,
except for Xz, are just different permutations in

A=A = - gl so

A
k(z ,z.) = J )  (a-1)! ata,, |w, (x)><w, ()]
oKy e & S R

'=A-{kk}+{kz}

=) A.A ) (a-1)! at a,, |w,,(x)> <w, ()]
o % e
A=A-{0 B+ 0)

= A.A! z z a* — a . 'w ,><w |
a3 A X A;I ATTA

where A = (A ,..,A.) so A = (A ,A)
2 A 1
or

4 Iw. > <w,
'm'j_m_. m! m

K =A.Al) ) ar ‘
3 1M172M7 . 1™ 1™

3™ Im,
sime teee
1 lJAWA

ok o a,
i i R

if each Ak is a jm pair.



149

Appendix 2 Core Excitations

Here we construct an operator K with kernel function k(ro,rl) which
acts only on the radial part of the wave function u(ro). The effects of
the angular momenta of the particle, of the core, and of their mutual

couplings are all included in the operator ‘K'.

If the total particle - core system has angular momentum JM, then we
can expand this into products of the core states ¢¥ and single-particle

m ~ .
states ule(EO) = YTj(go) ule(rO) :

yIM - j1g m u
(£Ol£llo-l£A) = § z Cm‘_lM a [ usz(Eo) ¢I(_r_1,..,£A) ]
JM A
=2 a [ ule(rO) szI(EO"El'."EA) ]
M . ~ j13 s u
where ¢ (£oi£ll-.) = z c YI;.(EO) ¢I(£1,..,£A)

23T et mUM 3

collects the angular, core, and coupling effects.

As usual, we define another single-particle wave function UZjI(rO) as

the projection of the total state YO onto all the internal states, which

are here collected into ¢;?I . The 'U' function is

_ JM A M
Ul'j'I'(ro) = < ¢z.j.1,(rol£lr--i£A) | '{,J (EO'E‘].’..'EA) >
zlj'Il
= J (1-K,, ) u,.
931 231 231
where
Legerr _ jrI'g JIT
szx (xgery) = ) Cm'u'M CmuM
my
m'y'

' A H A H
; A<Y?,j,(£0)¢1(£1..)| Y?j(£1)¢1(£0,__)>



- 150

The core states ¢¥ are now expanded into sums of Slater-determinant

wave functions, as in Appendix 1 :

j.m R R LT RN

u, _
o (xyrearr) = ‘z . o, (£ re00L,)
: 11

A'A
Thus

u u
A<O, (x) /- ) l o (xyres) >

I'u':j;
=) | w x)> « 1™ <w, P o )|
3 m “aygm R0 Iusgymy 3m
] 1]
1™
with
Ilul.J
K 1™ = aar ) ar, oo a_ .o .
TH:3,m) jm, TuPegymidmy_p  IH:Im My
so
AL & J'1I'T ~IIT I'u':j'm!
K = K .11
2]1 Eﬂl Cm 'u'm Cm 'zm Iu:Jlml
i It
]
. jlm
L]
~ A >
'<Yt2'j"£o)|“j m, (Eg)” Wy (zy) | o5 B))> -
| 11 1M1
1]
Since <Y?,j,(£0) | wj1m1(£0)> = Gjlj, Gmlm' vvmj,(ro)
we have more simply
2! e R‘!lel
> <
9,31 lwguse> K57 w5
with ’
£'j Y , * J'I'T ~JIT
ILJI i Reiil z z alI'u':jm,jmz_ C m'u'M CmuM Iy:j'm' ,Jm2 &

] LETR
jm,_, m'u
my
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